18 research outputs found

    Similar estimates of temperature impacts on global wheat yield by three independent methods

    Get PDF
    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.<br/

    Assessment of CSM&ndash;CERES&ndash;Rice as a Decision Support Tool in the Identification of High-Yielding Drought-Tolerant Upland Rice Genotypes

    No full text
    Drought is considered as one of the critical abiotic stresses affecting the growth and productivity of upland rice. Advanced and rapid identification of drought-tolerant high-yielding genotypes in comparison to conventional rice breeding trials and assessments can play a decisive role in tackling climate-change-associated drought events. This study has endeavored to explore the potential of the CERES&ndash;Rice model as a decision support tool (DST) in the identification of drought-tolerant high-yielding upland rice genotypes. Two experiments mentioned as potential experiment (1) for model calibration under optimum conditions and an experiment for yield assessment (2) with three irrigation treatments, (i) a control (100% field capacity [FC]), (ii) moderate stress (70% FC), and (iii) severe stress (50 % FC), were conducted. The results from the yield assessment experiment indicated that the grain yield of the studied genotypes decreased by 24&ndash;62% under moderate stress and by 43&ndash;78% under severe stress as compared to the control. The values for the drought susceptibility index (DSI) ranged 0.54&ndash;1.38 for moderate stress and 0.68&ndash;1.23 for severe stress treatment. Based on the DSI and relative yield, genotypes Khao/Sai, Dawk Kham, Dawk Pa&ndash;yawm, Goo Meuang Luang, and Mai Tahk under moderate stress and Dawk Kha, Khao/Sai, Nual Hawm, Dawk Pa&ndash;yawm, and Bow Leb Nahag under severe stress were among the top five drought-tolerant genotypes as well as high-yielding genotypes. The model accurately simulated grain yield under different irrigation treatments with normalized root mean square error &lt; 10%. An inverse relationship between simulated drought stress indices and grain yield was observed in the regression analysis. Simulated stress indices and water use efficiency (WUE) under different irrigation treatments revealed that the identified drought-tolerant high-yielding genotypes had lower values for stress indices and an increasing trend in their WUE indicating that the model was able to aid in decision support for identifying drought-tolerant genotypes. Simulating the drought stress indices could assist in predicting the response of a genotype under drought stress and the final yield at harvest. The results support the idea that the model could be used as a DST in the identification of drought-tolerant high-yielding genotypes in stressed as well as non-stressed conditions, thus assisting in the genotypic selection process in rice crop breeding programs

    Assessment of CSM–CERES–Rice as a Decision Support Tool in the Identification of High-Yielding Drought-Tolerant Upland Rice Genotypes

    No full text
    Drought is considered as one of the critical abiotic stresses affecting the growth and productivity of upland rice. Advanced and rapid identification of drought-tolerant high-yielding genotypes in comparison to conventional rice breeding trials and assessments can play a decisive role in tackling climate-change-associated drought events. This study has endeavored to explore the potential of the CERES–Rice model as a decision support tool (DST) in the identification of drought-tolerant high-yielding upland rice genotypes. Two experiments mentioned as potential experiment (1) for model calibration under optimum conditions and an experiment for yield assessment (2) with three irrigation treatments, (i) a control (100% field capacity [FC]), (ii) moderate stress (70% FC), and (iii) severe stress (50 % FC), were conducted. The results from the yield assessment experiment indicated that the grain yield of the studied genotypes decreased by 24–62% under moderate stress and by 43–78% under severe stress as compared to the control. The values for the drought susceptibility index (DSI) ranged 0.54–1.38 for moderate stress and 0.68–1.23 for severe stress treatment. Based on the DSI and relative yield, genotypes Khao/Sai, Dawk Kham, Dawk Pa–yawm, Goo Meuang Luang, and Mai Tahk under moderate stress and Dawk Kha, Khao/Sai, Nual Hawm, Dawk Pa–yawm, and Bow Leb Nahag under severe stress were among the top five drought-tolerant genotypes as well as high-yielding genotypes. The model accurately simulated grain yield under different irrigation treatments with normalized root mean square error < 10%. An inverse relationship between simulated drought stress indices and grain yield was observed in the regression analysis. Simulated stress indices and water use efficiency (WUE) under different irrigation treatments revealed that the identified drought-tolerant high-yielding genotypes had lower values for stress indices and an increasing trend in their WUE indicating that the model was able to aid in decision support for identifying drought-tolerant genotypes. Simulating the drought stress indices could assist in predicting the response of a genotype under drought stress and the final yield at harvest. The results support the idea that the model could be used as a DST in the identification of drought-tolerant high-yielding genotypes in stressed as well as non-stressed conditions, thus assisting in the genotypic selection process in rice crop breeding programs

    The Hot Serial Cereal Experiment for modeling wheat response to temperature: field experiments and AgMIP-Wheat multi-model simulations

    No full text
    The data set reported here includes the part of a Hot Serial Cereal Experiment (HSC) experiment recently used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat models and quantify their response to temperature. The HSC experiment was conducted in an open-field in a semiarid environment in the southwest USA. The data reported herewith include one hard red spring wheat cultivar (Yecora Rojo) sown approximately every six weeks from December to August for a two-year period for a total of 11 planting dates out of the 15 of the entire HSC experiment. The treatments were chosen to avoid any effect of frost on grain yields. On late fall, winter and early spring plantings temperature free-air controlled enhancement (T-FACE) apparatus utilizing infrared heaters with supplemental irrigation were used to increase air temperature by 1.3°C/2.7°C (day/night) with conditions equivalent to raising air temperature at constant relative humidity (i.e. as expected with global warming) during the whole crop growth cycle. Experimental data include local daily weather data, soil characteristics and initial conditions, detailed crop measurements taken at three growth stages during the growth cycle, and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models

    The Hot Serial Cereal Experiment for modeling wheat response to temperature: field experiments and AgMIP-Wheat multi-model simulations

    No full text
    The data set reported here includes the part of a Hot Serial Cereal Experiment (HSC) experiment recently used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat models and quantify their response to temperature. The HSC experiment was conducted in an open-field in a semiarid environment in the southwest USA. The data reported herewith include one hard red spring wheat cultivar (Yecora Rojo) sown approximately every six weeks from December to August for a two-year period for a total of 11 planting dates out of the 15 of the entire HSC experiment. The treatments were chosen to avoid any effect of frost on grain yields. On late fall, winter and early spring plantings temperature free-air controlled enhancement (T-FACE) apparatus utilizing infrared heaters with supplemental irrigation were used to increase air temperature by 1.3°C/2.7°C (day/night) with conditions equivalent to raising air temperature at constant relative humidity (i.e. as expected with global warming) during the whole crop growth cycle. Experimental data include local daily weather data, soil characteristics and initial conditions, detailed crop measurements taken at three growth stages during the growth cycle, and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models

    The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    No full text
    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.201

    The Hot Serial Cereal Experiment for modeling wheat response to temperature: field experiments and AgMIP-Wheat multi-model simulations

    No full text
    The data set reported here includes the part of a Hot Serial Cereal Experiment (HSC) experiment recently used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat models and quantify their response to temperature. The HSC experiment was conducted in an open-field in a semiarid environment in the southwest USA. The data reported herewith include one hard red spring wheat cultivar (Yecora Rojo) sown approximately every six weeks from December to August for a two-year period for a total of 11 planting dates out of the 15 of the entire HSC experiment. The treatments were chosen to avoid any effect of frost on grain yields. On late fall, winter and early spring plantings temperature free-air controlled enhancement (T-FACE) apparatus utilizing infrared heaters with supplemental irrigation were used to increase air temperature by 1.3°C/2.7°C (day/night) with conditions equivalent to raising air temperature at constant relative humidity (i.e. as expected with global warming) during the whole crop growth cycle. Experimental data include local daily weather data, soil characteristics and initial conditions, detailed crop measurements taken at three growth stages during the growth cycle, and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models
    corecore