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Abstract  113	  

The potential impact of global temperature change on global crop yield has recently been 114	  

assessed with different methods. Here we show that grid-based and point-based simulations 115	  

and statistical regressions (from historic records), without deliberate adaptation or CO2 116	  

fertilization effects, produce similar estimates of temperature impact on wheat yields at global 117	  

and national scales. With a 1℃ global temperature increase, global wheat yield is projected 118	  

to decline between 4.1% and 6.4%. Projected relative temperature impacts from different 119	  

methods were similar for major wheat producing countries China, India, USA and France, but 120	  

less so for Russia. Point-based and grid-based simulations, and to some extent the statistical 121	  

regressions, were consistent in projecting that warmer regions are likely to suffer more yield 122	  

loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it 123	  

was possible to quantify 'method uncertainty' in addition to model uncertainty. This 124	  

significantly improves confidence in estimates of climate impacts on global food security.  125	  
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Global demand for food is expected to increase 60% by the middle of the 21st century 1. 126	  

Climate change, and in particular rising temperatures, will impact food production 2. For 127	  

global food security, it is important to understand how climate change will impact crop 128	  

production at the global scale to develop fact-based mitigation and adaptation strategies. 129	  

Many studies have shown a wide range of temperature impacts on yields of different crops in 130	  

different seasons at different locations 3, including Europe	  4, China	  5, India 6 and Sub-Saharan 131	  

Africa	  7. A few studies have considered impacts on the entire globe8, 9, 10, 11. However, the 132	  

methods used to make these assessments are based on very different premises and use 133	  

different methodological steps. 134	  

The uncertainty of estimates of global temperature impact on crop yields was analyzed 135	  

for the crop model component (i.e. model uncertainty) by using two different multi-model 136	  

ensemble approaches 8, 9. While both studies used process-based crop simulation models, the 137	  

scaling approach and input data differed greatly. The first study divided the globe into a 138	  

geographical grid cells defined by latitude and longitude and used climate and crop 139	  

management data integrated over each grid as input for seven crop models 9. This grid-based 140	  

system was used to estimate relative yield changes for rice, maize, wheat and soybean. The 141	  

second study used data from 30 individual field sites deemed to represent 2/3 of 142	  

wheat-producing areas worldwide 8. In this point-based approach estimates from sentinel sites 143	  

were scaled up and extrapolated to cover geographical areas with similar conditions. 144	  

In further contrast, statistical regressions based on global and country level data have 145	  

been used to quantify the impact of increasing temperatures on yields of wheat, maize, barley, 146	  

soybean, sorghum and rice 10, 11. An important difference from the simulation models is that 147	  
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statistical models do not directly consider processes inherent to crop growth. However, 148	  

statistical models may include indirect effects of climatic variability, such as those related to 149	  

pests and diseases, which are not well captured by simulation models 12. When assessing 150	  

climate effects on crop yields, crop models can take into account autonomous adaptation and 151	  

an increase in atmospheric CO2 concentration. Also some statistical regressions include the 152	  

yield effects associated with autonomous adaptation 10. For the effects of gradual increase in 153	  

CO2 concentration in the past, statistical models may inherently include these within yield 154	  

effects 13, but for some regression models with a linear time term, effects of steady increase in 155	  

CO2 can be removed from yield impacts, just as the effects of technology improvement. In 156	  

addition, upscaling methods influence the outcomes from regional assessments 14. The 157	  

statistical approach obtained global or regional impacts by aggregating county districts or 158	  

countries 10, 11. The grid-based system obtained global or regional impacts by aggregating 0.5o 159	  

× 0.5o grid cells 9, while the point-based approach employed 30 sites to represent global wheat 160	  

regions 8. Therefore, differences in upscaling could add uncertainties in the impact estimated 161	  

in these studies. 162	  

In this letter, we compared three largely independent assessment methods used to 163	  

estimate temperature impacts on wheat yields: grid-based simulations, point-based 164	  

simulations, and statistical regressions. The details of each method are shown in Table S1. 165	  

The methods used independent different dynamic, statistical, up-scaling and source data 166	  

approaches. The grid-based simulations used here were from the Agricultural Model 167	  

Intercomparison and Improvement Project (AgMIP) 15 as part of the Inter-Sectoral Impact 168	  

Model Intercomparison Project (ISI-MIP). Wheat yields were simulated with seven global 169	  
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gridded crop models during 1980-2099 under RCP 8.5, a greenhouse gas emissions scenario 170	  

(here without CO2 fertilization effects), over 0.5o × 0.5o grid cells 9. The point-based 171	  

simulations from the AgMIP-Wheat project 8 consisted of simulations from 30 wheat models 172	  

(including one statistical model) for 30 representative locations around the world from a 173	  

baseline of the 1981-2010 period and a linear temperature increase. Temperature impacts 174	  

determined by statistical regression methods were obtained directly from previously 175	  

published data or our own statistical analysis (Table S1 and Supplementary methods).  176	  

Similar global impact from different methods 177	  

The average reductions in global wheat yield with 1oC global temperature increase 178	  

estimated from grid-based simulations, point-based simulations, and statistical regressions at 179	  

global level were all between 4.1% and 6.4% (Fig. 1). The average estimated temperature 180	  

impact from all three methods (and four studies) was a 5.7% reduction in global yield per 181	  

degree of global temperature increase. The estimated temperature effects on global wheat 182	  

yield from the three different methods were similar. 183	  

A meta-analyses of mostly process-based crop model simulations, reported a 3.3 ±	  0.8% 184	  

decline in wheat yields with a 1oC increase in local temperature 16. When adjusted to global 185	  

temperature change (which is usually less than local wheat region temperature changes 17), 186	  

this impact amounts to respectively 3.9% yield reduction per degree of global temperature 187	  

increase. Also, a summary of past regression and simulation studies reported an average of 188	  

5.9% wheat yield decrease with 1oC warming 18. These values are very similar to the results 189	  

obtained here for wheat using three different assessment methods.  190	  

The results here are presented for 1°C of global warming for consistency. However, the 191	  
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estimated impacts do not increase linearly with increasing temperature and the disagreement 192	  

among method estimates become larger with more temperature change (Fig. S9).  193	  

Impacts for major wheat-producing countries 194	  

To understand how the different methods project such similar temperature impacts on 195	  

global wheat yields, we disaggregated the temperature impacts to the national scale. 196	  

Point-based and grid-based simulations were compared for 97 countries (Fig. 2a). Generally, 197	  

projected temperature impacts on wheat yields for most of the large wheat producers were 198	  

similar between the two simulation methods (with a R2 of 0.64 for the top 20 producers, 199	  

Fig.S12), while differences were larger for small wheat-producing countries. Some large 200	  

differences occurred between point-based and grid-based simulation in irrigated semiarid 201	  

regions of Africa, which are mostly small wheat producers. The larger differences observed 202	  

for smaller producers have little weight in the global analysis. However, they are important 203	  

for regional economies. Method results were compared in more detail for the top five wheat 204	  

producing countries (Fig. 2b, Fig. 3). For China, India, USA, and France, the different 205	  

assessment methods resulted in similar values for temperature impacts on country wheat 206	  

yields. Additional country-level studies relying on other methods and data sources gave 207	  

similar estimates. For example, for China point-based simulations, grid-based simulations, 208	  

and two different regressions all concluded that yield reductions of about 3.0% are expected 209	  

with 1oC warming (Fig.3a). For India, country-level statistical regressions, grid-based and 210	  

point-based simulations all estimated about 8.0% yield declines per °C of global temperature 211	  

increase (Fig.3b). For Russia, the two simulation methods agreed well, but yield reductions 212	  

estimated from statistical regression were markedly higher (Fig. 3c). Another study using 213	  
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statistical regression methods also showed higher negative temperature impacts on wheat 214	  

yield than the two modeling methods used here for Rostov, a main wheat producing region in 215	  

Russia 19. Since wheat producing regions in Russia can experience relatively low 216	  

temperatures (below optimal growth temperature) during early growing stages, a temperature 217	  

increase during this stage (tillering), may have a positive yield impact, while at a later stage 218	  

(booting or grain filling) an increase in temperature often reduces wheat yields 19. As an 219	  

average temperature over a growing season is usually used in statistical regressions, such 220	  

in-season variability in temperature impacts would remain undetected. A dynamic crop 221	  

simulation model takes in-season variability and impacts into account. This may explain the 222	  

estimated larger impacts in Regression_A in comparison to the simulation results. For USA, a 223	  

recent study using data from wheat variety trials from 1985–2013 in Kansas, USA reported a 224	  

7.3% decrease (corrected for global temperature change) in wheat yield with 1oC global 225	  

temperature increase20. This result is similar to the other estimated temperature impacts on 226	  

wheat yields for the USA (Fig. 3d). For France, yield reduction estimates from grid-based 227	  

simulations, point-based simulations, and statistical regressions were 4.6%, 5.2%, and 4.2%, 228	  

respectively (Fig. 3e). In an independent study, a 0.42t.ha-1 reduction in wheat yields, which is 229	  

a reduction of about 5.5% after correction for global temperature change, was reported in 230	  

Northern France from 1998-2008 that included the planting of reference varieties in field 231	  

experiments 21. This is also in line with simulated impact response surfaces from a 232	  

26-wheat-model-ensemble across a European transect22.  233	  

With the different temperature impact methods used, despite some variation, there is a 234	  

general similarity in the magnitude of negative effects of increasing temperature on wheat 235	  
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yields for major wheat producing countries. As the five largest wheat producing countries 236	  

have a combined total >50% of total global wheat production 23, the similarity in method 237	  

estimates of temperature impacts for these countries also dominates the similar negative 238	  

temperature impacts computed at the global scale.  239	  

Differences in model inputs 240	  

At the location scale, the yields from the point-based simulations were highly correlated 241	  

to the yields from the grid-based simulations for the baseline and baseline+1oC periods (P < 242	  

0.001, R2 > 0.5; Table S2), but simulated yields were generally higher in point-based than in 243	  

grid-based simulations (Fig. 4 and Fig. S1). The average yields of the 30 locations in the 244	  

point-based simulations were 3.2 (82%) and 3.0 (82%) t.ha-1 higher than in the corresponding 245	  

grid-based simulations under baseline and baseline + 1oC conditions, respectively. In both 246	  

studies, mean temperatures were similar across sites for the 90 days period prior to maturity, 247	  

except for three locations (Fig. S2). Seasonal temperature variability in the model input data 248	  

differed slightly between methods and caused a larger seasonal yield variability in the 249	  

grid-based simulations compared to the point-based simulations (Fig S7). Solar radiation 250	  

inputs were 5% to 7% lower in the grid-based than in the point-based simulations (Fig. S3), 251	  

which might have contributed slightly to the simulated yield difference 24. Water stress was 252	  

not considered in either study for the comparison of these 30 locations and any possible 253	  

differences in precipitation inputs had no impact on the simulated results (Table S3). No 254	  

nitrogen stress was assumed in the point-based simulations , but four of the seven crop 255	  

models in the grid-based simulations did consider country-level average N fertilizer 256	  

application which could explain why the grid-based model ensemble simulated generally 257	  
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lower yields compared to the point-based simulations (Table S3).  258	  

Another important factor possibly contributing to yield differences between the 259	  

grid-based and point-based simulation at the local scale were the models used in the studies. 260	  

There were 29 crop models and one statistical regression in the point-based simulation 261	  

ensemble, whereas there were seven crop models in the grid-based simulations. Three models 262	  

(CERES, EPIC, and LPJmL) were common to both studies. These three models tended to 263	  

simulate lower yields than the 30-model ensemble average from the point-based study for the 264	  

30 locations, e.g., about 0.9 t·ha-1 less in the baseline period (Fig. S4). This may have lowered 265	  

the average simulated yields in grid-based simulations. Differences in the calibration of the 266	  

crop models would also affect simulations25. Some models in the grid-based simulations were 267	  

calibrated and some were not, and especially growing periods were not harmonized across 268	  

grid-based models 9, while in point-based simulations all models were calibrated for anthesis 269	  

and maturity dates with local phenology information 8. Hence, differences in models, solar 270	  

radiation and inputs like N fertilizer may explain some of the lower yields found in the 271	  

grid-based studies. Differences in cultivar calibration, particularly for phenology and growing 272	  

season, adds another source of differences between these two studies.  273	  

More yield reduction at warmer regions 274	  

Interestingly, when comparing the grid-based and point-based simulations, no obvious 275	  

bias was observed in the simulated relative yield impacts between point-based and grid-based 276	  

simulations (Fig. 4c and Fig.S1c), even though simulated absolute yields with point-based 277	  

simulations were much higher than grid-based simulations. This was still true when the 278	  

outlier location in Fig. 4c was removed from calculations. Temperature impacts at the local 279	  
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scale in grid-based and point-based simulations were highly correlated. With 1oC global 280	  

temperature increase, higher yield reductions were observed at locations with higher baseline 281	  

temperatures than locations with lower baseline temperatures in both point-based and 282	  

grid-based simulations (Fig. 4c). For example, at	  Aswan in Egypt, point-based and grid-based 283	  

simulations showed about 11% and 20% decline in yield with 1oC temperature increase, while 284	  

for	  Krasnodar in Russia, point-based and grid-based simulations estimated about 4% and 7% 285	  

yield decline with 1oC global increase. The spatial pattern of temperature impacts at the 286	  

location scale was also consistent with that at the country scale (Fig. 2a, Fig. 2b, and Fig.S11), 287	  

which indicated that warmer regions (e.g. India) are likely to suffer more wheat yield 288	  

reductions than cooler regions (e.g. China). The exception is for statistical regression 289	  

estimates for Russia, a generally cooler region (Fig. 2b). The effects of temperature on wheat 290	  

yields are consistent with reports of impacts on other crops, such as maize, soybean, and 291	  

cotton26, 27, 28. An increase in extreme temperature events with increasing mean temperatures 29 292	  

are likely to further contribute to yield decline in wheat 30, 31. Several crop models used in 293	  

point-based simulations (tested against warming experiments) and Regression_A (using a 294	  

nonlinear regression method), also considered the impacts of extreme temperature8, 10. 295	  

Effects of up-scaling methods 296	  

To assess climate impacts on global or country-level crop production, both process-based 297	  

crop modeling approaches and statistical regressions need to be upscaled from locations to 298	  

regions and then to the entire globe 32. In the point-based simulations, a range of local 299	  

information (e.g. local sowing dates, cultivar, anthesis and maturity date) was used for the 30 300	  

locations selected to represent about 70% of current global wheat production, which was then 301	  
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upscaled via FAO statistics 8. Much less local information was available for each of the 0.5o × 302	  

0.5o grid cells which were aggregated to country and global scales in the grid-based 303	  

simulations 9. However, very similar estimated temperature impacts on relative global yield 304	  

changes were simulated with both approaches. This was surprising as Ewert, van Bussel 14 305	  

showed that scaling methods can add significant uncertainties to simulated outcomes. 306	  

Although uncertainties are known to be reduced with multi-model ensembles, these results 307	  

might also indicate that the selected 30 locations in the point-based study 8 were indeed 308	  

representative of agro-climatic variability of wheat growing conditions throughout the world. 309	  

The results also suggest that global grid-based models, despite having limited local 310	  

information, are on a par with point-based approaches, while providing greater coverage of 311	  

regional heterogeneity.  312	  

In the statistical regression methods, yield and weather data from different scales were 313	  

used to obtain global and country-level temperature impacts. For example, both global 11 and 314	  

country 10 level regressions, observed yield records were used to conduct global assessments, 315	  

and both country-level yields and county (or similar) level yields were used for country 316	  

assessments (e.g. for China, India, and USA). Generally, regressions with different spatial 317	  

scales resulted in similar temperature impacts on yields.  318	  

Advantage of different assessment methods 319	  

Compared with process-based crop models, statistical regressions are simpler and require 320	  

less input information. However, other important growth factors which change with climate 321	  

change, such as	  radiation or the combined effects of heat, water and nutrient stresses, vary 322	  

over the period of a crop growing cycle, but are often not directly considered in statistical 323	  
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regressions. Some of these factors might also be confounded in a statistical regression 324	  

analysis. While there have been attempts to include more factors in statistical impact methods 325	  

33, detailed process-based, dynamic crop simulation models	  may be more suitable to simulate 326	  

the more complex climate change scenarios, beyond the single impact of temperature change. 327	  

However, process-based models, like statistical methods, often do not account for many other 328	  

important factors required for holistic climate change impact assessment. Such factors include 329	  

impacts from frost, pests, weeds, diseases, and floods, and also dissimilar impacts between 330	  

day and night temperatures 34, or extreme temperature events at different growth stages, 331	  

which are all likely to change with future climates. However, process-based models are 332	  

capable of accounting for the effects of elevated CO2 35, even though this effect is not 333	  

considered here, but large uncertainties exist not only with respect to the general effects on 334	  

crop yields 36, 37 but also with respect to model implementation 9, 38.  335	  

Field or environment-controlled experiments are independent ways to estimate 336	  

temperature impacts on wheat yields8, 16. For example, 2% to 8% reductions in wheat yield for 337	  

every 1oC increase of post-anthesis temperature above an optimum season-average 338	  

temperature of 15oC (i.e. local temperature) have been measured for a range of cultivars under 339	  

controlled 39 and field experiments 40. Considerable variations of wheat yield impacts with 340	  

increasing temperature have been found in a 4-growing season warming experiments 41. 341	  

However, while measured temperature impacts on yields can guide other impact estimation 342	  

methods, they are often specific to a particular location, cultivar, crop management or 343	  

experimental treatment and are not representative of a larger region, which makes it difficult 344	  

to extrapolate such measurements to regional or global impacts. 345	  
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Applying multi-method ensembles 346	  

Understanding and quantifying uncertainty of impact assessments has been a key aspect 347	  

in assessing climate impacts on crop production in recent studies25, 42, 43. Most previous studies 348	  

have focused on uncertainties arising from crop models or climate models25. Here the 349	  

uncertainties in both point-based and grid-based simulations were quantified by multi-model 350	  

ensembles. Uncertainties due to crop models, expressed as error bars in the grid-based 351	  

simulations, were relatively large at both global and country scales (Fig. 1 & Fig. 3), which 352	  

was due to the limited number of models and relatively wide spread of model results in this 353	  

study. The differences in model inputs (e.g. nitrogen application, sowing dates, cultivars), 354	  

calibration methods and model 9 explain some of the variability between the point and 355	  

grid-based simulations. Many crop models do not simulate temperature interactions with 356	  

canopy temperature variation under different soil water conditions, which could result in 357	  

simulated differences of temperature impacts 8. However, multi-model ensemble medians 358	  

have been shown to be more consistently accurate than individual models when comparing 359	  

measurements across locations and growing environments, adding confidence to the estimates 360	  

here44. Bootstrap resampling methods were employed to estimate the uncertainty of 361	  

temperature impacts calculated in the two global scale statistical regressions. Thus different 362	  

assessment approaches have independent methods of quantifying uncertainty. Multi-method 363	  

ensembles can enable the quantification of method uncertainty, similar to how multi-model 364	  

ensembles enable estimation of model uncertainty. The uncertainty range of wheat yield 365	  

reduction with 1oC global temperature increase from the multi-method ensemble calculated 366	  

from the median of the four methods analyzed here was between 4.0% and 6.9% at the global 367	  
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scale (95% confidence interval). While this absolute difference is still substantial, this is 368	  

narrower than the uncertainty due to the models in the multi-model ensembles from the 369	  

simulations or the boot-strapping method in the statistical regressions. Therefore, applying 370	  

multi-method ensembles can improve reliability of the assessment of climate impacts on 371	  

global food security. 372	  

However, the consistency of negative global yield impacts of increasing temperature 373	  

quantified here at global level should not be applied to local or regional scale. As previous 374	  

studies have found, there were considerable large variations of increasing temperature 375	  

impacts on wheat yields at local and regional scale8, 45, and the spatial variation of temperature 376	  

impacts has also been observed in the two modeling approaches here among different 377	  

locations. 378	  

Adaptation to global warming, e.g. farmer’s autonomous adaptation through changing 379	  

sowing dates or cultivars, has been suggested in several studies to compensate negative 380	  

impacts of increasing temperature 46. At global scale, point-based simulations did not consider 381	  

adaptation. Also a panel regression approach attempted to exclude adaptations 10. In the 382	  

grid-based simulations, four of the seven models did allow cultivar and sowing date 383	  

adaptation with a changing climate (Table S3), and the simulated impacts tended to be lower 384	  

with simulated adaptation (Fig.S10).	  However, temperature impacts from models with 385	  

adaptation varied largely. Temperature impacts with and without adaptation were estimated 386	  

from different models in grid-based simulations, which added considerable uncertainty in the 387	  

results. The adaptation effects on temperature impacts should be further studied with more 388	  

consistent protocols for multi-model assessments. Other future adaptation, e.g. wheat 389	  
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cultivation shifting to marginal regions in higher latitudes, could offset some of the negative 390	  

impacts.  391	  

Assessing climate change impacts on crop production is a key aspect in determining 392	  

appropriate global food security strategies 42. Reliable estimates of climate change impacts on 393	  

food security require an integrated use of climate, crop, and economic models15. Applying 394	  

multi-method ensembles further improves the estimated impact precision and confidence in 395	  

assessments of climate impacts on global food security. The consistent negative impact from 396	  

increasing temperatures confirmed by three independent methods warrants critical needed 397	  

investment in climate change adaptation strategies to counteract the adverse effects of rising 398	  

temperatures on global wheat production, including genetic improvement and management 399	  

adjustments 47, 48. However, some or all of the negative global warming impacts on wheat 400	  

yield might be compensated by increasing atmospheric CO2 concentrations under full 401	  

irrigation and fertilization25. 402	  
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Figure legends 619	  

Figure 1 | Impacts of 1oC global temperature increase on global wheat yield 620	  

estimated by different assessment methods. The grid-based (0.5o x 0.5o grid cells) 621	  

method is an ensemble median from seven global gridded crop models, averaged over 622	  

30 years and aggregated over all simulated grid cells (after Ref. 9). The point-based 623	  

method is an ensemble median from 30 models, averaged over 30 years and 624	  

aggregated over 30 global locations (after Ref. 8). Regression_A is based on a 625	  

country-level statistical regression from Ref. 10. Regression_B is based on a global 626	  

level statistical regression from Ref.11. The error bars for four different methods 627	  

indicate the 95% confidence intervals based on multi-model ensembles in the 628	  

simulations and bootstrap resampling in the statistical regressions. The mean of the 629	  

method_ensemble is shown with error bar indicating the 95% confidence intervals 630	  

based on medians of individual methods. 631	  

 632	  

Figure 2 | Comparison of wheat yield changes with 1oC global temperature 633	  

increase for 97 wheat producing countries estimated using three different 634	  

methods. (a) Median simulations of a grid-based (0.5o × 0.5o) ensemble of seven 635	  

models (after Ref. 9) versus a point-based (30 locations over 30 years) ensemble of 30 636	  

models (after Ref. 8). (b) Country level statistical regression for China, India, USA, 637	  

France and Russia, the top five wheat producing countries, from Ref. 10 versus 638	  

point-based simulations for these countries (after Ref. 8). Note, only data on these five 639	  

countries were supplied in Ref. 10. Circle color indicates the wheat growing season 640	  
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temperature (from Ref. 10). Circle size indicates the amount of wheat production for 641	  

each country according to FAO statistics 23. The solid line is the 1:1 line and dashed 642	  

lines represent 0% yield change. 643	  

 644	  

Figure 3 | Estimated impacts of 1oC global temperature increase on wheat yield 645	  

(a) China, (b) India, (c) Russia, (d) USA, and (e) France using different assessment 646	  

methods. The grid-based (0.5o × 0.5o) method produced an ensemble median from 647	  

seven global gridded crop models (after Ref. 9). The point-based method produced an 648	  

ensemble median from 30 models from 1 to 3 country locations (after Ref. 8). 649	  

Regression_A is a statistical regression based on country statistics after Ref. 10. 650	  

Regression_C is a statistical regression based on 0.5o × 0.5o grid statistics after Ref. 651	  

45. Regression_D is county level statistical regressions produced by two different 652	  

regression methods from Ref. 50. Regression_E is a county level regression produced 653	  

for this study. The error bars indicate the 95% confidence interval based on 654	  

multi-models for the simulations and bootstrap resampling (Regression_A, 655	  

Regression_B, and Regression_D) or t-tests (Regression_E) for the statistical 656	  

regressions. No error bar was provided for Regression_C in Ref. 45. 657	  

 658	  

Figure 4 | Comparison of simulated multi-model median wheat yield and yield 659	  

changes. Absolute wheat yields for (a) baseline and (b) baseline + 1oC periods, and (c) 660	  

relative yield change with 1oC global temperature increase from grid-based 661	  

simulations (0.5o x 0.5o) (from Ref. 9) of cells centered around the 30 locations from 662	  
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the point-based study versus that from the point-based simulations (from Ref. 8). Note 663	  

in (c), regression line is drawn without outlier (location in Sudan). 664	  

 665	  
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Figure 1. 667	  
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Figure 2. 671	  
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Figure 3. 675	  
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Figure 4. 678	  
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Methods 681	  

Grid-based simulations. Seven global gridded models simulated 0.5o × 0.5o grid cells across 682	  

all wheat growing regions of the world from 1980 to 2099 under a RCP8.5 scenario with a 683	  

statistically-downscaled version of HadGEM2-ES 49, with only a small trend in solar radiation 684	  

at some locations (Fig. S6). Here, a set of simulation experiments without effects of elevated 685	  

CO2 and under full irrigation treatments were used. Among the seven global gridded models, 686	  

adaptation through cultivars, sowing dates or growing season had been employed in four of 687	  

the models (Table S3). The global yield impacts from models with and without adaptation are 688	  

compared in Fig. S10. Only one climate model and RCP were used as there was limited data 689	  

available for grid-based simulations. The period 2029-2058 was selected as being on average 690	  

2oC warmer globally than the baseline period of 1981-2010 and the impact was halved to 691	  

adjust the temperature change to +1oC for the analysis here. The temperature change 692	  

considered here is 1oC warming of the global mean temperature, including land and ocean 693	  

surface. The change in simulated grain yields between these two temperature periods was 694	  

used to estimate temperature impacts on wheat at global and national scales. Grid-based 695	  

simulations for the direct comparison to point-based simulations were extracted from 696	  

simulations assuming full irrigation. For national and global scale results, grid-based 697	  

simulations were aggregated by area-weighted means, using rain-fed and irrigated wheat 698	  

areas per pixel of MIRCA2000 50 combining simulations under irrigated and rain-fed 699	  

conditions. To make projections between the different grid-based models comparable, yield 700	  

simulations were bias-corrected to national FAO levels by using FAO mean yields and 701	  

superimposing projected relative changes. More details about the grid-based simulations can 702	  
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be found in Ref. 9. 703	  

Point-based simulations. Thirty models, 29 crop simulation models and one statistical 704	  

regression model, were used to simulate wheat grain yields for 30 representative locations in 705	  

high rainfall and irrigated wheat growing regions around the world (together representing 706	  

about 70% of global wheat production) with the estimated baseline period of 1981-2010 and 707	  

baseline + 2oC. Three models (CERES, EPIC, and LPJmL) in point-based simulations were 708	  

used in grid-based simulations. No CO2 fertilization effects or any adaptation was considered 709	  

in the point-based simulations. The impact was halved to adjust the temperature change to 710	  

+1oC for the analysis here. Local temperature impacts on yields were adjusted to global 711	  

temperature change and upscaled via FAO statistics. Temperature impacts on national scales 712	  

were assessed for 125 countries. Each country was	  assigned as being similar to one or more 713	  

representative locations, so the temperature impacts of each country were the average impacts 714	  

of the corresponding representative locations. More details can be found in Ref. 8. 715	  

Statistical regressions. All estimated temperature impacts from statistical regressions were 716	  

from literature reports10, 11, 45, 51, except for one new statistical regression analysis for the USA 717	  

that we present here (Supplementary Methods). All temperature impacts were adjusted to 718	  

global temperature change following the approach by Ref. 8.	  Details of these regression 719	  

studies and impacts adjustments are summarized in Table S1. 720	  

Meta-analysis and experimental data. Meta-analysis and experimental data from the literature 721	  

are cited here for further comparison after adjusting them to global temperature change where 722	  

possible. Meta-analysis and experimental data from the literature were cited here for further 723	  

comparison after adjusting them to global temperature change. An adjustment factor to global 724	  
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temperature used for the statistical regressions was also used here. The temperature factors 725	  

are listed in Table S1. 726	  

Comparison at a national scale. Temperature impacts for 97 countries from both grid-based 727	  

and point-based simulations were compared. Due to the limited number of country-scale 728	  

estimates of temperature impacts on wheat yields with statistical regression analysis, we 729	  

compared the regression results with the two simulation approaches for the top five wheat 730	  

producing countries (Table S1). 731	  

Comparison at local scales. Yield simulations from 30 single grid cells from the grid-based 732	  

method were chosen that were centered around the 30 global representative locations from the 733	  

point-based method. Full irrigation treatments were applied in point-based and grid-based 734	  

simulations. The baseline and increased temperature periods for the 30 grid cells were 735	  

determined individually by matching the 30-year average annual temperature of each grid to 736	  

the 30-year average annual temperature of the corresponding location from point-based 737	  

simulations. The baseline and increased temperature periods for each of the 30 grid cells and 738	  

temperature differences between the two methods are shown in Table S4. Most locations had 739	  

very similar temperature input data in the two comparison periods for grid-based and 740	  

point-based simulations. Outliers (Table S4) were found where the input data differed 741	  

substantially but these did not cause outliers in yield impacts. The yield impact outlier at the 742	  

Sudan location was caused by very low simulated yields (Fig. 4). The simulated yields for 743	  

baseline and increased temperature periods were used to calculate temperature impacts at the 744	  

local scale. These were also adjusted to global temperature change with the same method at 745	  

global and national scales. The temperature and radiation data from the critical growing 746	  
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period of wheat from 90 days before maturity to maturity were compared. Maturity dates 747	  

were the dates supplied from observations for each location in the point-based method 8. 748	  

	  749	  
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