127 research outputs found

    Measures of organizational characteristics associated with adoption and/or implementation of innovations: A systematic review

    Get PDF
    Abstract Background This paper identifies and describes measures of constructs relevant to the adoption or implementation of innovations (i.e., new policies, programs or practices) at the organizational-level. This work is intended to advance the field of dissemination and implementation research by aiding scientists in the identification of existing measures and highlighting methodological issues that require additional attention. Methods We searched for published studies (1973–2013) in 11 bibliographic databases for quantitative, empirical studies that presented outcome data related to adoption and/or implementation of an innovation. Included studies had to assess latent constructs related to the “inner setting” of the organization, as defined by the Consolidated Framework for Implementation Research. Results Of the 76 studies included, most (86%) were cross sectional and nearly half (49%) were conducted in health care settings. Nearly half (46%) involved implementation of evidence-based or “best practice” strategies; roughly a quarter (26%) examined use of new technologies. Primary outcomes most often assessed were innovation implementation (57%) and adoption (34%); while 4% of included studies assessed both outcomes. There was wide variability in conceptual and operational definitions of organizational constructs. The two most frequently assessed constructs included “organizational climate” and “readiness for implementation.” More than half (55%) of the studies did not articulate an organizational theory or conceptual framework guiding the inquiry; about a third (34%) referenced Diffusion of Innovations theory. Overall, only 46% of articles reported psychometric properties of measures assessing latent organizational characteristics. Of these, 94% (33/35) described reliability and 71% (25/35) reported on validity. Conclusions The lack of clarity associated with construct definitions, inconsistent use of theory, absence of standardized reporting criteria for implementation research, and the fact that few measures have demonstrated reliability or validity were among the limitations highlighted in our review. Given these findings, we recommend that increased attention be devoted toward the development or refinement of measures using common psychometric standards. In addition, there is a need for measure development and testing across diverse settings, among diverse population samples, and for a variety of types of innovations

    Mixed-species plantations of eucalyptus with nitrogen fixing trees: a review

    Get PDF
    Mixed-species plantations of Eucalyptus with a nitrogen (N2) fixing species have the potential to increase productivity while maintaining soil fertility, compared to Eucalyptus monocultures. However, it is difficult to predict combinations of species and sites that will lead to these benefits. We review the processes and interactions occurring in mixed plantations, 5 and the influence of species or site attributes, to aid the selection of successful combinations of species and sites. Successful mixtures, where productivity is increased over that of monocultures, have often developed stratified canopies, such that the less shade-tolerant species overtops the more shadetolerant species. Successful mixtures also have significantly higher rates of N and P cycling than 10 Eucalyptus monocultures. It is therefore important to select N2-fixing species with readily decomposable litter and high rates of nutrient cycling, as well as high rates of N2-fixation. While the dynamics of N2-fixation in tree stands are not well understood, it appears as though eucalypts can benefit from fixed N as early as the first or second year following plantation establishment. A meta-analysis of 18 published studies revealed several trials in which mixtures were significantly 15 (

    The CD3-Zeta Chimeric Antigen Receptor Overcomes TCR Hypo-Responsiveness of Human Terminal Late-Stage T Cells

    Get PDF
    Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter

    The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule

    Get PDF
    Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change

    Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ

    Get PDF
    Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need to consider the important contribution made by BM-dependent mechanisms, in addition to CAM-dependent adhesion
    corecore