6 research outputs found

    Finished sequence and assembly of the DUF1220-rich 1q21 region using a haploid human genome

    Get PDF
    BackgroundAlthough the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region.ResultsWe found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion.ConclusionsThrough the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks

    Three patients with homozygous familial hypercholesterolemia: Genomic sequencing and kindred analysis

    No full text
    Abstract Background Homozygous Familial Hypercholesterolemia (HoFH) is an inherited recessive condition associated with extremely high levels of low‐density lipoprotein (LDL) cholesterol in affected individuals. It is usually caused by homozygous or compound heterozygous functional mutations in the LDL receptor (LDLR). A number of mutations causing FH have been reported in literature and such genetic heterogeneity presents great challenges for disease diagnosis. Objective We aim to determine the likely genetic defects responsible for three cases of pediatric HoFH in two kindreds. Methods We applied whole exome sequencing (WES) on the two probands to determine the likely functional variants among candidate FH genes. We additionally applied 10x Genomics (10xG) Linked‐Reads whole genome sequencing (WGS) on one of the kindreds to identify potentially deleterious structural variants (SVs) underlying HoFH. A PCR‐based screening assay was also established to detect the LDLR structural variant in a cohort of 641 patients with elevated LDL. Results In the Caucasian kindred, the FH homozygosity can be attributed to two compound heterozygous LDLR damaging variants, an exon 12 p.G592E missense mutation and a novel 3kb exon 1 deletion. By analyzing the 10xG phased data, we ascertained that this deletion allele was most likely to have originated from a Russian ancestor. In the Mexican kindred, the strikingly elevated LDL cholesterol level can be attributed to a homozygous frameshift LDLR variant p.E113fs. Conclusions While the application of WES can provide a cost‐effective way of identifying the genetic causes of FH, it often lacks sensitivity for detecting structural variants. Our finding of the LDLR exon 1 deletion highlights the broader utility of Linked‐Read WGS in detecting SVs in the clinical setting, especially when HoFH patients remain undiagnosed after WES

    Lung Function in African American Children with Asthma Is Associated with Novel Regulatory Variants of the KIT Ligand KITLG/SCF and Gene-By-Air-Pollution Interaction

    No full text
    Baseline lung function, quantified as forced expiratory volume in the first second of exhalation (FEV1), is a standard diagnostic criterion used by clinicians to identify and classify lung diseases. Using whole genome sequencing data from the National Heart, Lung, and Blood Institute TOPMed project, we identified a novel genetic association with FEV1 on chromosome 12 in 867 African American children with asthma (p = 1.26 x 10(-8), beta = 0.302). Conditional analysis within 1 Mb of the tag signal (rs73429450) yielded one major and two other weaker independent signals within this peak. We explored statistical and functional evidence for all variants in linkage disequilibrium with the three independent signals and yielded 9 variants as the most likely candidates responsible for the association with FEV1 Hi-C data and eQTL analysis demonstrated that these variants physically interacted with KITLG (aka SCF) and their minor alleles were associated with increased expression of KITLG gene in nasal epithelial cells. Gene-by-air-pollution interaction analysis found that the candidate variant rs58475486 interacted with past-year SO2 exposure (p = 0.003, beta = 0.32). This study identified a novel protective genetic association with FEV1, possibly mediated through KITLG, in African American children with asthma. This is the first study that identified genetic association between lung function and KITLG, which has established role in orchestrating allergic inflammation in asthma

    Whole Genome Sequencing Identifies CRISPLD2 as a Lung Function Gene in Children With Asthma

    No full text
    corecore