22 research outputs found

    Protein Kinase D2 Is an Essential Regulator of Murine Myoblast Differentiation

    Get PDF
    Muscle differentiation is a highly conserved process that occurs through the activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to generate new myofibers. A defined pattern of myogenic transcription factors is orchestrated during this process and is regulated via distinct signaling cascades involving various intracellular signaling pathways, including members of the protein kinase C (PKC) family. The protein kinase D (PKD) isoenzymes PKD1, -2, and -3, are prominent downstream targets of PKCs and phospholipase D in various biological systems including mouse and could hence play a role in muscle differentiation. In the present study, we used a mouse myoblast cell line (C2C12) as an in vitro model to investigate the role of PKDs, in particular PKD2, in muscle stem cell differentiation. We show that C2C12 cells express all PKD isoforms with PKD2 being highly expressed. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated during the initiation of mouse myoblast differentiation. Selective inhibition of PKCs or PKDs by pharmacological inhibitors blocked myotube formation. Depletion of PKD2 by shRNAs resulted in a marked inhibition of myoblast cell fusion. PKD2-depleted cells exhibit impaired regulation of muscle development-associated genes while the proliferative capacity remains unaltered. Vice versa forced expression of PKD2 increases myoblast differentiation. These findings were confirmed in primary mouse satellite cells where myotube fusion was also decreased upon inhibition of PKDs. Active PKD2 induced transcriptional activation of myocyte enhancer factor 2D and repression of Pax3 transcriptional activity. In conclusion, we identify PKDs, in particular PKD2, as a major mediator of muscle cell differentiation in vitro and thereby as a potential novel target for the modulation of muscle regeneration

    Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness

    Get PDF
    AbstractCell fate decisions and pluripotency, but also malignancy depend on networks of key transcriptional regulators. The T-box transcription factor TBX3 has been implicated in the regulation of embryonic stem cell self-renewal and cardiogenesis. We have recently discovered that forced TBX3 expression in embryonic stem cells promotes mesendoderm specification directly by activating key lineage specification factors and indirectly by enhancing paracrine NODAL signalling. Interestingly, aberrant TBX3 expression is associated with breast cancer and melanoma formation. In other cancers, loss of TBX3 expression is associated with a more aggressive phenotype e.g. in gastric and cervical cancer. The precise function of TBX3 in pancreatic ductal adenocarcinoma remains to be determined. In the current study we provide conclusive evidence for TBX3 overexpression in pancreatic cancer samples as compared to healthy tissue. While proliferation remains unaltered, forced TBX3 expression strongly increases migration and invasion, but also angiogenesis in vitro and in vivo. Finally, we describe the TBX3-dependency of cancer stem cells that perpetuate themselves through an autocrine TBX3–ACTIVIN/NODAL signalling loop to sustain stemness. Thus, TBX3 is a new key player among pluripotency-related genes driving cancer formation

    Segment Occlusion vs. Reconstruction—A Single Center Experience With Endovascular Strategies for Ruptured Vertebrobasilar Dissecting Aneurysms

    Get PDF
    Objective: Ruptured dissecting aneurysms of the intracranial vertebral arteries exhibit an extraordinarily high risk for morbidity and mortality and are prone to re-rupture. Therefore, early treatment is mandatory to induce stagnation of the critical dynamic mural process. Appropriate endovascular approaches are segment sacrifice and reconstruction, however, both carry specific risks and benefits. To date most studies discuss only one of these approaches and focus on one specific device or technique. Therefore, our study aimed to present our experiences with both techniques, providing a considered approach on when to perform endovascular reconstruction or sacrifice.Materials and Methods: We retrospectively reviewed patients with subarachnoid hemorrhage in our database, suffering from dissecting aneurysms of the intradural vertebral arteries and treated endovascularly in the acute setting. A total of 16 cases were included. Clinical history, radiologic findings and outcomes were analyzed.Results: In 7 patients a reconstructive approach was chosen with 4 of them receiving stent-assisted coiling as primary strategy. One of the 7 patients suffered early re-bleeding due to progression of the dissection and therefore treatment was augmented with implantation of 2 flow diverters. The remaining 2 patients were primarily treated with flow diverters in telescoping technique. In 9 patients a deconstructive approach was followed: 6 patients were treated with proximal coil-occlusion of the V4 segment, 3 patients received distal coiling of the V4 segment. Two patients died (GOS 1) in the subacute stage due to sequelae of recurrent episodes of raised intracranial pressure and parenchymal hemorrhage. Two patients kept severe disability (GOS 3), six patients had moderate disability (GOS 4) and seven patients showed full recovery (GOS 5). None of the patients suffered from a procedural or postprocedural ischemic stroke.Conclusions: In patients with good collateral vascularization, proximal, or distal partial segment sacrifice via with endovascular coil occlusion seems to yield the best risk-benefit ratio for treatment of ruptured dissecting V4 aneurysms, especially since no continued anticoagulation is required and possibly essential surgery remains feasible in this scenario. If possible, PICA occlusion should be avoided—although even proximal PICA occlusion can become necessary, when weighing against the risk of an otherwise untreated ruptured V4 dissecting aneurysm. Contrarily, if the dominant V4 segment is affected, the hemodynamic asymmetry prohibits occlusion and necessitates reconstruction of the respective segment. For this, implants with high metal coverage treating the entire affected segment appear to be the most promising approach

    Retro Propulsion Assisted Landing Technologies (RETALT): Current Status and Outlook of the EU Funded Project on Reusable Launch Vehicles

    Get PDF
    The development and operation of Reusable Launch Vehicles (RLV) are currently changing the global market of space transportation. A main game changer in this field are the technologies of retro propulsion assisted landing, which is a concept of decelerating the vehicle during its return to ground by firing its engines against the velocity vector. To foster a cost-efficient and sustainable global and European launcher market there is not only an urgent need to build up the necessary know-how on state-of-the-art Vertical Take-off Vertical Landing (VTVL) Two Stage To Orbit (TSTO) concepts, but also to go beyond this approach. Historically, many concepts of Reusable Launch Vehicle (RLV) are based on Single Stage To Orbit (SSTO) designs. Therefore, in the EU Horizon 2020 project RETALT (RETro propulsion Assisted Landing Technologies), the VTVL approach is investigated in a twofold manner: A configuration similar to the SpaceX rocket “Falcon 9” serves as a reference for the state-of-the-art TSTO RLV. A configuration similar to the DC-X serves as a reference for a VTVL SSTO. In this way, the concept of vertical landing with retro propulsion is investigated in a more general way and has the potential to be applied to more concepts of future RLV. In the RETALT project research for both reference configurations is performed in the areas of aerodynamics, aerothermodynamics and flight dynamics and GNC, as well as advanced structural parts, materials, health monitoring systems, TPS, mechanisms and advanced propulsion assisted landing systems. This paper gives an overall overview of the project; the current status of the project will be presented and an outlook of future activities will be given. Furthermore, the configuration layout and landing concept of both configurations will be discussed in more detail. Advanced structures and mechanisms of RETALT configurations are discussed in a complementary paper

    Early evolution of radial glial cells in Bilateria

    Get PDF
    Bilaterians usually possess a central nervous system, composed of neurons and supportive cells called glial cells. Whereas neuronal cells are highly comparable in all these animals, glial cells apparently differ, and in deuterostomes, radial glial cells are found. These particular secretory glial cells may represent the archetype of all (macro) glial cells and have not been reported from protostomes so far. This has caused controversial discussions of whether glial cells represent a homologous bilaterian characteristic or whether they (and thus, centralized nervous systems) evolved convergently in the two main clades of bilaterians. By using histology, transmission electron microscopy, immunolabelling and whole-mount in situ hybridization, we show here that protostomes also possess radial glia-like cells, which are very likely to be homologous to those of deuterostomes. Moreover, our antibody staining indicates that the secretory character of radial glial cells is maintained throughout their various evolutionary adaptations. This implies an early evolution of radial glial cells in the last common ancestor of Protostomia and Deuterostomia. Furthermore, it suggests that an intraepidermal nervous system—composed of sensory cells, neurons and radial glial cells—was probably the plesiomorphic condition in the bilaterian ancestor

    RETALT: review of technologies and overview of design changes

    No full text
    RETALT (RETro propulsion Assisted Landing Technologies) is a project funded in the frame of the European Union Horizon 2020 program, that is studying critical key technologies for the vertical landing of launcher configurations with the aid of retro propulsion. In particular Aerodynamics, Aerothermodynamics, Flight Dynamics and Guidance Navigation and Control (GNC), Structures, Mechanisms, Thrust Vector Control and Thermal Protection Systems are investigated in detail in the project. This paper provides an overview of the technological achievements in these different technological areas, with emphasis on the interaction between them. Design changes made to the RETALT1 configuration are laid out in detail. The novel approach of using interstage segments as aerodynamic control surfaces proved to be challenging from the aerodynamics, flight dynamics, mechanical and structural points of view. For this reason, planar fins were introduced as aerodynamic control surfaces in the new base line configuration for RETALT1. The paper concludes with a summary of future steps to be made in the RETALT project to reach the targeted Technology Readiness Level (TRL) of the different key technologies

    Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function

    No full text
    Francke M, Kreysing M, Mack A, et al. Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progress in Retinal and Eye Research. 2014;38:43-69.This article presents a summary and critical review of what is known about the 'grouped retina', a peculiar type of retinal organization in fish in which groups of photoreceptor cell inner and outer segments are arranged in spatially separated bundles. In most but not all cases, these bundles are embedded in light-reflective cups that are formed by the retinal pigment epithelial cells. These cups constitute a specialized type of retinal tapetum (i.e., they are biological 'mirrors' that cause eye shine) and appear to be optimized for different purposes in different fishes. Generally, the large retinal pigment epithelial cells are filled with light-reflecting photonic crystals that consist of guanine, uric acid, or pteridine depending on species, and which ensure that the incoming light becomes directed onto the photoreceptor outer segments. This structural specialization has so far been found in representatives of 17 fish families; of note, not all members of a given family must possess a grouped retina, and the 17 families are not all closely related to each other. In many cases (e.g., in Osteoglossomorpha and Aulopiformes) the inner surface of the cup is formed by three to four layers of strikingly regularly shaped and spaced guanine platelets acting as an optical multilayer. It has been estimated that this provides an up to 10fold increase of the incident light intensity. In certain deep-sea fish (many Aulopiformes and the Polymixidae), small groups of rods are embedded in such 'parabolic mirrors'; most likely, this is an adaptation to the extremely low light intensities available in their habitat. Some of these fishes additionally possess similar tapetal cups that surround individual cones and, very likely, also serve as amplifiers of the weak incident light. In the Osteoglossomorpha, however, that inhabit the turbid water of rivers or streams, the structure of the cups is more complex and undergoes adaptation-dependent changes. At dim daylight, probably representing the usual environmental conditions of the fish, the outer segments of up to 30 cone cells are placed at the bottom of the cup where light intensity is maximized. Strikingly, however, a large number of rod receptor cells are positioned behind each mirroring cup. This peculiar arrangement (i) allows vision at deep red wavelenghts, (ii) matches the sensitivity of rod and cone photoreceptors, and (iii) facilitates the detection of low-contrast and color-mixed stimuli, within the dim, turbid habitat. Thus, for these fish the grouped retina appears to aid in reliable and quick detection of large, fast moving, biologically relevant stimuli such as predators. Overall, the grouped retina appears as a peculiar type of general retinal specialization in a variety of fish species that is adaptive in particular habitats such as turbid freshwater but also the deep-sea. The authors were prompted to write this review by working on the retina of Gnathonemus petersii; the data resulting from this work (Landsberger et al., 2008; Kreying et al., 2012) are included in the present review. (C) 2013 Elsevier Ltd. All rights reserved

    Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis

    Get PDF
    The implementation of targeted and nontargeted chemical screening analysis in combination with in vitro and organism-level bioassays is a prerequisite for a more holistic monitoring ofwater quality in the future. For chemical analysis, little or no sample enrichment is often sufficient, while bioanalysis often requires larger sample volumes at a certain enrichment factor for conducting comprehensive bioassays on different endpoints or further effect-directed analysis (EDA). To avoid logistic and technical issues related to the storage and transport of large volumes ofwater, samplingwould benefit greatly from onsite extraction. This study presents a novel onsite large volume solid phase extraction (LVSPE) device tailored to fulfill the requirements for the successful effect-based and chemical screening of water resources and complies with available international standards for automated sampling devices. Laboratory recovery experiments using 251 organic compounds in the log D range from −3.6 to 9.4 (at pH 7.0) spiked into pristine water resulted in acceptable recoveries and from 60 to 123% for 159 out of 251 substances.Within a European-wide demonstration program, the LVSPE was able to enrich compounds in concentration ranges over three orders of magnitude (1 ng L−1 to 2400 ng L−1). Itwas possible to discriminate responsive samples from samples with no or only low effects in a set of six different bioassays (i.e. acetylcholinesterase and algal growth inhibition, androgenicity, estrogenicity, fish embryo toxicity, glucocorticoid activity). The LVSPE thus proved applicable for onsite extraction of sufficient amounts ofwater to investigate water quality thoroughly by means of chemical analysis and effect-based tools without the common limitations due to small sample volumes.publishedVersio
    corecore