6 research outputs found

    Teaching precision farming and entrepreneurship for European students: Sparkle online course

    Get PDF
    Within the framework of the European project named ‘SPARKLE’, an online course was created after studying educational needs on precision agriculture (PA), state of the art of technologies and a prospective study of the commercial sector. Five educational and research institutions, high-tech farms and enterprises specializing in technology transfer created the syllabus of the course and the platform contents. The course was designed to provide 30 h of student dedication, via online presentations, documents and videos for each topic. A free pilot course started in April 2020 and 385 students from Italy, Portugal, Greece & Spain enrolled. To trace performance and acquisition of competences, questionnaires were completed by students for each topic and a final overall test. Students’ opinions about the course were also registered using anonymous polls, and results evaluated, to be able to enhance the Sparkle course for subsequent editions. Students also took part in a business model competition, to solve real challenges proposed by farms, related to the use of these technologies

    Management of multidrug resistant Gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations

    Get PDF
    Solid organ transplant (SOT) recipients are especially at risk of developing infections by multidrug resistant (MDR) Gram-negative bacilli (GNB), as they are frequently exposed to antibiotics and the healthcare setting, and are regulary subject to invasive procedures. Nevertheless, no recommendations concerning prevention and treatment are available. A panel of experts revised the available evidence; this document summarizes their recommendations: (1) it is important to characterize the isolateÂŽs phenotypic and genotypic resistance profile; (2) overall, donor colonization should not constitute a contraindication to transplantation, although active infected kidney and lung grafts should be avoided; (3) recipient colonization is associated with an increased risk of infection, but is not a contraindication to transplantation; (4) different surgical prophylaxis regimens are not recommended for patients colonized with carbapenem-resistant GNB; (5) timely detection of carriers, contact isolation precautions, hand hygiene compliance and antibiotic control policies are important preventive measures; (6) there is not sufficient data to recommend intestinal decolonization; (7) colonized lung transplant recipients could benefit from prophylactic inhaled antibiotics, specially for Pseudomonas aeruginosa; (8) colonized SOT recipients should receive an empirical treatment which includes active antibiotics, and directed therapy should be adjusted according to susceptibility study results and the severity of the infection.J.T.S. holds a research contract from the FundaciĂłn para la FormaciĂłn e InvestigaciĂłn de los Profesionales de la Salud de Extremadura (FundeSalud), Instituto de Salud Carlos III. M.F.R. holds a clinical research contract “Juan RodĂ©s” (JR14/00036) from the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore