3,404 research outputs found
A Conceptual Analysis of Performance Attributesâ Influence on NBA Attendance: Why Do Consumers Choose to Attend Games?
Fans want to capitalize on their choices when deciding whether to attend NBA games. The purpose of this study is to provide a conceptual analysis regarding how overall team performances as well as offensive and defensive factors may relate to consumers choosing to attend NBA games during the 2007-2008 to 2016-2017 sea-sons. Analyzing the results through the lens of the theory of choice, the results revealed significant relationships existed primarily between attendance at NBA games and offensive capabilities of the teams. As a practical matter, consumers choose to attend games that are most likely to be offensively oriented. Subscribe to JAS
The Effect Demographics Have On The Demand For Orange Juice
This paper investigates how the demand for orange juice is affected by the demographics of consumers. There are many variables in the orange juice demand equation and demographics are only one. Demographic variables are important in determining the tastes and preferences of different regions. The data that has been collected is weekly data over a two year period of time. The seemingly unrelated regression method will be used to examine the data. This project will be beneficial to orange juice advertising firms and companies that sell orange juice.Food Consumption/Nutrition/Food Safety, Marketing,
Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core
Most therapeutic agents are excluded from entering the central nervous system by the bloodâbrain barrier (BBB). Receptor mediated transcytosis (RMT) is a common mechanism used by proteins, including transferrin (Tf), to traverse the BBB. Here, we prepared Tf-containing, 80-nm gold nanoparticles with an acid-cleavable linkage between the Tf and the nanoparticle core to facilitate nanoparticle RMT across the BBB. These nanoparticles are designed to bind to Tf receptors (TfRs) with high avidity on the blood side of the BBB, but separate from their multidentate TfâTfR interactions upon acidification during the transcytosis process to allow release of the nanoparticle into the brain. These targeted nanoparticles show increased ability to cross an in vitro model of the BBB and, most important, enter the brain parenchyma of mice in greater amounts in vivo after systemic administration compared with similar high-avidity nanoparticles containing noncleavable Tf. In addition, we investigated this design with nanoparticles containing high-affinity antibodies (Abs) to TfR. With the Abs, the addition of the acid-cleavable linkage provided no improvement to in vivo brain uptake for Ab-containing nanoparticles, and overall brain uptake was decreased for all Ab-containing nanoparticles compared with Tf-containing ones. These results are consistent with recent reports of high-affinity anti-TfR Abs trafficking to the lysosome within BBB endothelium. In contrast, high-avidity, Tf-containing nanoparticles with the acid-cleavable linkage avoid major endothelium retention by shedding surface Tf during their transcytosis
Too good to be true: when overwhelming evidence fails to convince
Is it possible for a large sequence of measurements or observations, which
support a hypothesis, to counterintuitively decrease our confidence? Can
unanimous support be too good to be true? The assumption of independence is
often made in good faith, however rarely is consideration given to whether a
systemic failure has occurred.
Taking this into account can cause certainty in a hypothesis to decrease as
the evidence for it becomes apparently stronger. We perform a probabilistic
Bayesian analysis of this effect with examples based on (i) archaeological
evidence, (ii) weighing of legal evidence, and (iii) cryptographic primality
testing.
We find that even with surprisingly low systemic failure rates high
confidence is very difficult to achieve and in particular we find that certain
analyses of cryptographically-important numerical tests are highly optimistic,
underestimating their false-negative rate by as much as a factor of
Superconducting Cosmc Strings and Primordial Magnetic Fields
We consider grand unified theories with superconducting cosmic strings and
which admit the mechanism for generating primordial magnetic fields recently
discussed by Vachaspati. We show that these models are severely constrained by
cosmological arguments. Quite generically, either stable springs or vortons
will form. Provided the mass per unit length of the strings is sufficiently
large, these stable configurations will overclose the Universe.Comment: BROWN-HET-830, 14 pages, use phyzz
Preclinical Results of Camptothecin-Polymer Conjugate (IT-101) in Multiple Human Lymphoma Xenograft Models
Purpose: Camptothecin (CPT) has potent broad-spectrum antitumor activity by inhibiting type I DNA topoisomerase (DNA topo I). It has not been used clinically because it is water-insoluble and highly toxic. As a result, irinotecan (CPT-11), a water-soluble analogue of CPT, has been developed and used as salvage chemotherapy in patients with relapsed/refractory lymphoma, but with only modest activity. Recently, we have developed a cyclodextrin-based polymer conjugate of 20-(S)-CPT (IT-101). In this study, we evaluated the preclinical antilymphoma efficacy of IT-101 as compared with CPT-11.
Experimental Design: We determined an in vitro cytotoxicity of IT-101, CPT-11, and their metabolites against multiple human lymphoma cell lines. In human lymphoma xenografts, the pharmacokinetics, inhibitions of tumor DNA topo I catalytic activity, and antilymphoma activities of these compounds were evaluated.
Results: IT-101 and CPT had very high in vitro cytotoxicity against all lymphoma cell lines tested. As compared with CPT-11 and SN-38, IT-101 and CPT had longer release kinetics and significantly inhibit higher tumor DNA topo I catalytic activities. Furthermore, IT-101 showed significantly prolonged the survival of animals bearing s.c. and disseminated human xenografts when compared with CPT-11 at its maximum tolerated dose in mice.
Conclusions: The promising present results provide the basis for a phase I clinical trial in patients with relapsed/refractory lymphoma
Isolation of sophorose during sophorolipid production and studies of its stability in aqueous alkali: epimerisation of sophorose to 2-O-β-d-glucopyranosyl-d-mannose
NMR and anion exchange chromatography analysis of the waste streams generated during the commercial production of sophorolipids by the yeast Candida bombicola identified the presence of small but significant quantities (1% w/v) of free sophorose. Sophorose, a valuable disaccharide, was isolated from the aqueous wastes using a simple extraction procedure and was purified by chromatography on a carbon celite column providing easy access to large quantities of the disaccharide. Experiments were undertaken to identify the origin of sophorose and it is likely that acetylated sophorose derivatives were produced by an enzyme catalysed hydrolysis of the glucosyl-lipid bond of sophorolipids; the acetylated sophorose derivatives then undergo hydrolysis to release the parent disaccharide.
Treatment of sophorose with aqueous alkali at elevated temperatures (0.1M NaOH at 50â°C) resulted in C2-epimerisation of the terminal reducing sugar and its conversion to the corresponding 2-O-β-d-glucopyranosyl-d-mannose which was isolated and characterised. In aqueous alkaline solution β-(1,2)-linked glycosidic bonds do not undergo either hydrolysis or peeling reactions
Multiplexed Guide RNA Expression Leads to Increased Mutation Frequency in Targeted Window Using a CRISPR-Guided Error-Prone DNA Polymerase in Saccharomyces cerevisiae
Clustered regularly interspaced short palindromic repeats(CRISPR)-Cas9technology, with its ability to target a specific DNA locus usingguide RNAs (gRNAs), is particularly suited for targeted mutagenesis.The targeted diversification of nucleotides in Saccharomycescerevisiae using a CRISPR-guided error-prone DNA polymerase calledyEvolvR was recently reported. Here, we investigate the effectof multiplexed expression of gRNAs flanking a short stretch of DNAon reversion and mutation frequencies using yEvolvR. Phenotypic assaysdemonstrate that higher reversion frequencies are observed when expressingmultiple gRNAs simultaneously. Next generation sequencing revealsa synergistic effect of multiple gRNAs on mutation frequencies, whichis more pronounced in a mutant with a partially defective DNA mismatchrepair system. Additionally, we characterize a galactose-inducibleyEvolvR, which enables temporal control of mutagenesis. This studydemonstrates that multiplex expression of gRNAs and induction of mutagenesisgreatly improves the capabilities of yEvolvR for generation of geneticlibraries in vivo
- âŚ