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Abstract 33 

NMR and anion exchange chromatography analysis of the waste streams generated during the 34 

commercial production of sophorolipids by the yeast Candida bombicola identified the presence of 35 

small but significant quantities (1 % w/v) of free sophorose. Sophorose, a valuable disaccharide, 36 

was isolated from the aqueous wastes using a simple extraction procedure and was purified by 37 

chromatography on a carbon celite column providing easy access to large quantities of the 38 

disaccharide. Experiments were undertaken to identify the origin of sophorose and it is likely that 39 

acetylated sophorose derivatives were produced by an enzyme catalysed hydrolysis of the 40 

glucosyl-lipid bond of sophorolipids; the acetylated sophorose derivatives then undergo hydrolysis 41 

to release the parent disaccharide. 42 

Treatment of sophorose with aqueous alkali at elevated temperatures (0.1M NaOH at 50 OC) 43 

resulted in C2-epimerisation of the terminal reducing sugar and its conversion to the corresponding 44 

2-O-β-D-glucopyranosyl-D-mannose which was isolated and characterised. In aqueous alkaline 45 

solution β-(1,2)-linked glycosidic bonds do not undergo either hydrolysis or peeling reactions. 46 

 47 
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1. Introduction 52 

The disaccharide sophorose, 2-O-β-D-glucopyranosyl-D-glucose, is an important biologically active 53 

molecule. As a free disaccharide, sophorose is a potent inducer of cellulases1 and is used to 54 

generate enzymes for use in bioethanol production.   Sophorose is a structural component of the 55 

biologically active glycosides saponins2, including ginsengosides3. Sophorose is also the 56 

carbohydrate component of sophorolipids4-6 which are increasingly being manufactured on a large 57 

scale for use as surface active agents.  58 

The synthesis and derivatisation of sophorose was first reported in the 1920s by Freudenberg et 59 

al7 and subsequently the methods were improved in the 1960s by Coxon and Fletcher8. Interest in 60 

sophorose grew in the 1950s when it was found to be present in trace amounts in commercial 61 

supplies of D-glucose that had been obtained by the mineral acid catalysed hydrolysis of starch9 62 

and this led to increased efforts to find a more convenient route to sophorose. In the 1950 and 63 

1960s a number of authors reported the isolation of sophorose from naturally occurring sophoryl-64 

glycosides including kaempferol sophoroside isolated from pods of Sophoar japonica10 and from 65 

the sweet ester glycoside stevioside from Stevia rebaudiana11. More recently sophorose and 66 

activated sophorose donors have been produced from sophorolipids. Hoffmann et al12 have 67 

reported the isolation of per-O-acetyl-sophorosyl bromide from the reaction of acetylated 68 

sophorolipids with acetic acid and hydrogen bromide. Jourdier and Ben13 have reported the acid 69 

catalysed hydrolysis of sophorolipids generating a mixture of glucolipids, glucose and sophorose 70 

from which, after enzyme treatment to remove glucose, they were able to isolate sophorose.  71 

Despite the relatively wide interest in sophorose there is only limited information about its chemical 72 

reactivity and that of 1,2-linked glycosides in general; this is partially due to the fact that they are 73 

not readily accessible. In this paper we report the isolation of sophorose from a waste stream 74 

generated during the commercial production of sophorolipids, provide evidence for its synthesis by 75 

a combination of enzyme and base catalysed hydrolysis reactions and we describe the results of 76 

our  studies of the reaction of sophorose with aqueous alkali.  77 



2. Results and Discussion. 78 

2.1 Isolation of sophorose form sophorolipid process waste streams. 79 

The yeast Candida bombicola produces sophorolipids in a biosynthetic pathway14,15 involving the 80 

hydroxylation of a fatty acid (normally C18) to generate a (ω-1)-hydroxyfatty acid which is then 81 

glucosylated twice, initially at the (ω-1)-hydroxyl-group and then at the 2’-position of the newly 82 

added glucose residue to generate a sophorolipid. The pathway is concluded with the partial 83 

acetylation of the sugar primary hydroxyls (6’ and 6’’) and by partial lactonisation of the 4’’-OH with 84 

the lipid fatty acid to give a mixture of lactone (1, R=H or OAc) and acid (2, R=H or OAc) forms of 85 

the sophorolipids (Scheme 1).  86 

Scheme 1 here. 87 
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During a typical fermentation, sophorolipid production is allowed to proceed until the pH of the 90 

fermentation mixture falls to approximately 3.5 and the mixture settles into two phases: a lipid rich 91 

bottom layer containing the sophorolipids16 and an upper aqueous phase (spent liquors). To isolate 92 

the deacetylated acid form of the sophorolipid (2 R=H) it is normal practice to recover the pure 93 

lactone and then to convert it to the acid.  The lactone is recovered from the lipid rich layer by 94 

extraction of acidic impurities by adjustment of the pH to above the pKa of the acid group using 95 

cold aqueous alkali (pH 5.5). After separation of the layers, the lipid rich layer contains 96 

predominately the lactone form and the aqueous phase (lactone waste) which is brown in colour 97 

contains a number of impurities. To isolate the acid form the lactone is converted into the acid in a 98 



hydrolysis step involving heating with aqueous alkali17. In an attempt to determine the composition 99 

of the different phases and to understand the extraction and hydrolysis reaction the different 100 

phases were analysed by NMR and HPAEC. HPAEC analysis of the lactone waste identified the 101 

presence of free sugars, interestingly the HPAEC chromatograph (Fig 1) contained peaks 102 

consistent with the presence of both glucose and sophorose (3) (ratio 1: 10 w/w). NMR analysis 103 

confirmed the presence of sugars and acid sophorolipids. 104 

 105 

Figure 1: High Performance Anion Exchange Chromatographs (HPAEC) chromatographs recorded 106 
using a Dionex ICS3000 and employing a Carbopac PA20 column. Analytes (50-200 ppm)  were 107 
eluted with a mobile phase composed of 20 mM KOH with a flow rate of 0.3 ml.min-1. Top: A 100 108 
ppm glucose standard; Middle: A sample of the lactone waste; Bottom: A 50 ppm sophorose 109 
standard. 110 

 111 



 As the commercial process generates large volumes of lactone waste (1000s of litres) an attempt 112 

was made to isolate the sophorose. Initially, the waste (98g, 100mL) was diluted with an equal 113 

volume of ultrapure water and the sugars were extracted into the aqueous phase leaving the lipid 114 

components as a separate organic phase. After separation of the two layers, the aqueous phase 115 

was evaporated to leave a brown solid residue which contained a range of salts as well as the 116 

desired sugars (5.5g, 5.6% w/w of the original waste). NMR analysis of the solid (Fig 2a) confirmed 117 

that the organic component of the material was a mixture of glucose and sophorose and that no 118 

lipids were present. Comparison of the integrals for the anomeric protons (α plus β-anomers) for 119 

the two sugars indicated that the extracted mixture contained a 1: 2.3 (w/w) ratio of glucose to 120 

sophorose and HPAEC analysis suggested a slightly higher ratio of 1:2.9 (w/w). The solid was 121 

dissolved in ultra pure water and applied to a carbon-celite column and the column was eluted 122 

initially with water to remove salts and then with an aqueous mobile phase containing increasing 123 

concentrations of ethanol. Sophorose eluted as a single peak when the eluent was composed of 124 

20% ethanol; after evaporation sophorose was recovered as a crystalline white solid (1.0g). NMR 125 

analysis (Fig 2b) indicated that sophorose with a purity of greater than 95% had been recovered 126 

and this corresponds to approximately one percent of the original waste. Given the large volume of 127 

lactone waste available this represents a potentially large source of sophorose. 128 



 129 

Figure 2: 1H-NMR spectra recorded at 70 oC in D2O on a Bruker 500MHz Avance Spectrometer (a) 130 
comparison of NMRS od a glucose standard, a sophorose standard and a sample of the lactone 131 
waste: a) top: glucose standard; middle: sophorose standard; bottom: sugar sample extracted from 132 
lactone waste (b) top: NMR of the sophorose isolated from a carbon-celite column; bottom: NMR of 133 
a sophorose standard. 134 

 As the biosynthetic pathway involves sequential addition of glucose residues to the lipid chain15, 135 

free sophorose was not expected to be a product of the fermentation process.  136 

2.2 Attempt to observe base catalysed hydrolysis of sophorolipids. 137 

In an attempt to determine if sophorose was being produced by a base catalysed hydrolysis of the 138 

sophorolipid during the processing of the crude fermentation products, an experiment was 139 

undertaken to see if sophorose was released from the acid form of the sophorolipid on heating with 140 



aqueous alkali. The acid form of the sophorolipid was chosen because of its solubility in aqueous 141 

alkali and because of the absence of acetyl-ester groups, the hydrolysis of which would consume 142 

base. The reaction of the acid sophorolipid with aqueous alkali (pH  12, 50 oC) was monitored by 143 

HPAEC and NMR over a period of 24 h. No reaction was observed by NMR, however, analysis of 144 

the HPAEC chromatographs (Fig 3) identified the rapid production of very small quantities of 145 

glucose, small quantities of sophorose and a second disaccharide which was identified as the C2-146 

epimer 2-O-β-D-glucopyranosyl-D-mannose (see Section 2.4). These additional sugars were 147 

produced in the first three hours after which time no further reaction was observed and the 148 

combined peak area of the new sugars suggested that less than 0.5% of the starting material had 149 

been converted to sophorose. Under the relatively mild alkaline conditions employed, sophorolipids 150 

were not expected to undergo glycosidic bond hydrolysis or to participate in either substitution or 151 

elimination processes centred at the lipid ω-1 carbon; it is more likely that the very small amount of 152 

sophorose that is produced is generated through the rapid hydrolysis of small quantities of the 153 

corresponding acetylated-sugars that are present as minor impurities in the starting acid. This 154 

result suggests that under moderately basic conditions hydrolysis of sophorolipids does not lead to 155 

the production of sophorose. 156 

Figure 3: High performance 157 
anion exchange chromatographs recorded using a Carbopac PA20 column and eluting analytes (50-158 
200 ppm) with a mobile phase composed of 20 mM KOH with a flow rate of 0.3 ml.min-1. Top: Acid 159 
form of the sophorolipid; bottom: reaction mixture obtained after treatment of the acid sophorolipid 160 
with aqueous alkali (10 mM, 3 h, 50 oC). 161 



2.3 Observation of an enzyme catalysed hydrolysis of sophorolipids. One of the reasons why the 162 

yeast C. bombicola is thought to synthesise sophorolipids is to allow it to sequester available fatty 163 

acids. It has previously been suggested that under conditions of starvation the yeast is able to 164 

metabolise sophorolipids14. In order to investigate the possibility that the yeast releases an enzyme 165 

which is able to catalyse the hydrolysis of the gluco-lipid bond of the acid or lactone forms of the 166 

sophorolipids, two experiments were undertaken in which the spent liquors recovered at the end of 167 

a large scale fermentation were filtered to remove any biomass and then immediately added to a 168 

solution containing either the diacetylated-lactone sophorolipid (1, R=Ac) or the deacetylated acid 169 

form (2, R=H) of the sophorolipid.  170 

 171 

Figure 4: Use of high performance anion exchange chromatography to monitor the enzyme 172 
catalysed hydrolysis of sophorolipids1 173 

(a) Acid form of the sophorolipid; top: before addition of fermentation liquor and bottom: after 174 
treatment with spent fermentation liquor  175 

(b) Lactone form of the sophorolipid; top: before addition of fermentation liquor and bottom: after 176 
treatment with spent fermentation liquors. 177 
 178 



Chromatographs generated during HPAEC analysis of the products (Fig 4a Acid after treatment 179 

and 4b Lactone after treatment) showed the presence of sophorose and glucose along with a small 180 

amount of isomaltose and an unknown product (potentially glucolipid). The amount of sophorose 181 

was significantly higher when the acid form of the sophorolipid was used as a substrate. The 182 

results are consistent with an enzyme catalysed hydrolysis of the sophorolipids with the acid form 183 

having generated sophorose, in comparison, the product formed from the lactone would be 184 

expected to be diacetylated-sophorose. The latter result, whilst not being conclusive evidence, is 185 

consistent with the presence of enzyme/s that are able to cleave the 1,2-glycosidic bond and the 186 

lipid-glycosidic bond. An enzyme catalysed cleavage of the 1,2-glycosidic link would, in the first 187 

instance, generate a gluco-lipid and a glucosyl-enzyme intermediate. Attack by water on the 188 

glucosyl-enzyme intermediate would generate glucose and release the enzyme. Attack by a 189 

primary hydroxyl of a second glucose molecule on the glucosyl-enzyme intermediate would lead to 190 

production of isomaltose and release the enzyme. Production of isomaltose requires the 191 

transferase activity of an inverting enzyme.  192 

2.4 Studies of the chemical reactivity of sophorose and isolation of 2-O-β-D-glucopyranosyl-D-193 

mannose. Very little is known about the chemical reactivity of 1,2-linked glycosides. Treatment of 194 

1-3, 1-4 and 1-6-linked glycosides with aqueous alkali results in the observation of peeling 195 

reactions and the generation of multiple small chain fatty acids including saccharinic acids18,19. As 196 

peeling proceeds through enolisation and migration of the carbonyl carbon to C2 and beyond (a 197 

process that is not possible in C2-linked glycosides) it was of interest to study the stability of 198 

sophorose in aqueous alkali. After treatment of sophorose with sodium hydroxide solution using 199 

conditions which would promote peeling of glycosides, the HPAEC chromatographs contained 200 

signals identifying the presence of two carbohydrates: a late eluting peak for sophorose and a 201 

second disaccharide peak. NMR analysis of the reaction mixture indicated that deuterium 202 

exchange was occurring at the C2 position of the starting material and, as was the case in the 203 

HPAEC analysis, a second disaccharide was present. These results were consistent with the 204 

epimerisation of the reducing sugar to form the corresponding 2-O-β-D-glucopyranosyl-D-mannose 205 

(4, Scheme 2).  206 

 207 



Scheme 2  208 
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The partial epimerisation of sophorose has already been reported but in this earlier study the 210 

product 2-O-β-D-glucopyranosyl-D-mannose was not isolated and was not fully characterised20. The 211 

NMR spectra recorded here suggested that under the conditions of the current experiments 75% of 212 

the starting sophorose was converted to 2-O-β-D-glucopyranosyl-D-mannose (4). The mechanism 213 

for such epimerisation reactions was first proposed by Lobry de Bruyn and Alberda  van 214 

Ekenstein21 and involves ring-opening of the reducing glucose and base catalysed reversible 215 

enolate formation between C2 and C1. Reprotonation of the enolate anion on C2 can take place on 216 

either the top Re-face to regenerate glucose or from the bottom Si-face to generate mannose. At 217 

equilibrium, and under the conditions employed in the current experiments, the thermodynamically 218 

more favourable mannose epimer dominates (see scheme 2).  219 



 220 

Figure 5. Selected region of the HSQC NMR spectrum of 2-O-β-D-glucopyranosyl-α/β-D-mannose.  221 
The F1-axis provides the 13C -spectrum and the F2-axis the 1H -spectrum. The location of the 222 
individual resonances for the different protons and carbons are listed in the table. The spectrum was 223 
recorded at 70 oC in D2O. 224 

 225 

 In an attempt to isolate the 2-O-β-D-glucopyranosyl-D-mannose a small quantity of sophorose was 226 

treated with aqueous alkali and after HPAEC analysis confirmed that the majority of the starting 227 

material had been converted to 2-O-β-D-glucopyranosyl-D-mannose the reaction was quenched by 228 

acidification with acetic acid. The crude products were then applied to a carbon-celite column and 229 

the new disaccharide was isolated by elution with aqueous ethanol. The product eluted as a single 230 

peak in 20% ethanol and, after evaporation of the solvent, 2-O-β-D-glucopyranosyl-D-mannose was 231 

recovered as a white powder. The proton NMR (Fig 5 F2 (x)-axis) of an aqueous solution of 2-O-β-232 

D-glucopyranosyl-D-mannose indicated that the product was present as a pair of anomers. At 30 oC 233 

and in an aqueous solution of D2O 2-O-β-D-glucopyranosyl-D-mannose exists as a mixture 234 

containing 77% of the alpha-anomer and 23% of the beta-anomer. A number of 1D and 2D-NMRs 235 

were recorded (1H, 13C and HSQC spectra are shown in Fig 5.) and a full assignment for the proton 236 

and carbons of the alpha anomer and for the protons of the beta-anomer (for the beta-anomer 237 

carbon signals were weak and only the anomeric signals were clearly visible above the spectral 238 

noise); the chemical shifts for both the protons and carbons are listed in the table. It should be 239 



noted that the proton assignment for the anomeric glucose (H1’)-protons are different to those in 240 

the literature20 (the values in the literature for the H1’ proton for alpha and beta have been 241 

inverted). Even after prolonged exposure to high pHs there was no evidence for hydrolysis of the 242 

glycosidic bond and there was no evidence for decomposition via peeling reactions. 243 

In summary, the valuable β-(1,2)-linked disaccharide  sophorose was isolated from waste streams 244 

generated during the commercial manufacture of sophorolipids and we have provided evidence  245 

which indicates that sophorose is generated by an enzyme catalysed hydrolysis of the parent 246 

sophorolipid. When treated with aqueous alkali, sophorose did not undergo either hydrolysis or a 247 

peeling reaction and instead underwent epimerisation at C2 to generate 2-O-β-D-glucopyranosyl-D-248 

mannose which was isolated and characterised by NMR. 249 

 250 

Table: Individual chemical shifts for protons and carbons for 2-O-β-D-glucopyranosyl-α-D-mannose 251 
(top) and specific resonances for 2-O-β-D-glucopyranosyl-α-D-mannose (bottom) (recorded in D2O 252 
at 70 oC on a Bruker Avance 500 MHz spectrometer).  253 

 254 

Experimental 255 

3.1 Materials and Chemicals 256 

Monosaccharides and disaccharide standards were purchased from Carbosynth (Berkshire, UK). 257 

All other reagents were purchased from Aldrich (Poole, UK) unless otherwise stated and were 258 

used as supplied. 259 

3.1.1 Sophorolipid and sophorolipid process wastes. Samples of sophorolipids and sophorolipid 260 

process wastes were provided by Croda Biotechnology Group (Widnes, UK) and were generated 261 

from a large scale fermentation employing an appropriate lipid and glucose as feeds.  262 

Fermentations (>10,000 L) were initiated by inoculation of the media with the yeast strain Candida 263 



bombicola and at the end of the fermentation the fermentation broth was allowed to settle 264 

generating two phases: a lipid-rich phase containing sophorolipids and an aqueous phase. 265 

Adjustment of the pH of the sophorolipid layer by addition of aqueous alkali to 5.5 provided a 266 

sophorolipid lactone and generated an aqueous phase containing sophorose and which will be 267 

subsequently referred to as ‘lactone-waste’. Pure samples of the lactone form (1) and the acid form 268 

of the sophorolipids (2) were also supplied by Croda. 269 

3.2 General Analytical Procedures. 270 

Analysis of monosaccharides and disaccharides was performed using high pressure anion 271 

exchange chromatography coupled to a pulsed amperometric detector (HPAEC-PAD). Standards 272 

and unknowns were separated on a Dionex ICS3000 HPAEC system incorporating a Carbopac PA 273 

20 column operating at 30 oC and using a mobile phase containing 20mM KOH running at a flow 274 

rate of 0.3 ml.min-1. Standards of glucose, isomaltose and sophorose were prepared in ultra-pure 275 

water (50-200 ppm). 276 

NMR analyses of sophorolipids, sophorose, isomaltose and 2-O-β-D-glucopyranosyl-D-mannose 277 

were performed on a Bruker DPX500 NMR spectrometer, a series of 1D and 2D-NMR spectra 278 

were recorded in D2O at a probe temperature of 70 oC and employing acetone as either an internal 279 

or external standard. The 2D-spectra recorded included homonuclear 1H-1H-COSY and TOCSY 280 

(80 ms mixing time) and heteronuclear  1H-13C HSQC, 1H-13C- HMBC,  1H-13C- HSQC-TOCSY and 281 

finally a NOESY spectrum was recorded for 2-O-β-D-glucopyranosyl-α/β-D-mannose . 282 

3.3 Isolation of disaccharides.  283 

3.3.1. Isolation of sophorose (2-O-β-D-glucopyranosyl-α/β-D-glucose). Lactone waste (100 ml, 98 284 

g) was added to ultra-pure water (100 ml) and was left to stir at 35-40 °C for 1h. The resulting 285 

brown suspension was centrifuged (4200 rpm for 10 mins) and the supernatant was collected. 286 

After completion of the separation process, the aqueous phase was rotary evaporated at reduced 287 

pressure (10 mmHg) and at a temperature of 45°C to give a crude mixture of salts and sugars as a 288 

brown syrup (5.5g). The salt and sugar mix (5.5 g) was redissolved in UPW (3 ml) and the sample 289 

was sonicated for 5 mins before being applied to the top a carbon-celite column (5 x 50 cm 290 



prepared from Darco G 60, 100 mesh carbon, 200 g, and Celite 535, 200 g). Elution of sugars was 291 

carried out with an increasing concentration of aqueous ethanol (from 0 to 20% ethanol in UPW in 292 

5% incremental steps of 2 L), HPAEC analysis of the different fractions identified salt plus glucose 293 

in the fractions eluting with 5% ethanol (4.0 g) isomaltose in the fractions eluting with 10% ethanol 294 

(0.5g) and sophorose from the fractions eluting with 20% ethanol (1.0g). 295 

3.3.2 Isolation of 2-O-β-D-glucopyranosyl-α/β-D-mannose. 296 

Sophorose (50 mg) was treated with aqueous sodium hydroxide (100 mM, 20 ml 297 

at pH 13) in a pressure tube and was held at 50 oC for 24 h. The progress of the reaction was 298 

monitored using HPAEC; samples (1 ml) were removed every 3 h and the pH of the sample was 299 

adjusted to 6 using glacial acetic acid. Samples were then transferred to small glass vials and 300 

injected into the HPAEC using sodium hydroxide (50 mM) as the mobile phase. HPAEC analysis 301 

suggested that the reaction had reached equilibrium after 24 h at which point the remaining 302 

solution was neutralised with glacial acetic acid and the solvent removed under vacuum to give a 303 

crude mixture of sugars and sodium acetate as a yellow solid. The sample was redissolved in 304 

ultrapure water (1 ml) and was applied to the top of a carbon-celite column (2.5 x 20 cm). Elution of 305 

sugars was carried out with an increasing concentration of aqueous ethanol (from 0 to 20% ethanol 306 

in UPW in 5% incremental steps each of 200 ml). The desired product eluted with 20% aqueous 307 

ethanol and the combined fractions were rotary evaporated to give a pure sample of 2-O-β-D-308 

glucopyranosyl-α/β-D-mannose as a white solid (10 mg, 40% overall yield based on the volume of 309 

solution remaining at the end of the reaction). The identity and anomeric purity of the product was 310 

determined by 1D-and 2D-NMR (see Section 2). 311 

 312 

3.4 Monitoring the base catalysed hydrolysis of sophorolipids 313 

Acid sophorolipid (200 mg, 0.322 mM) was dissolved in aqueous sodium hydroxide 314 

(10 mM, 20 ml at pH 12) and stirred in a pressure tube at a temperature of 50 °C for 270 min. 315 

Samples (1 ml) were taken at 30 min intervals and the pH of the samples was adjusted to pH 6 316 



using glacial acetic acid. Samples were then transferred into small glass vials and injected into the 317 

HPAEC.  318 

 319 

3.5 Monitoring the stability of sophorose in aqueous alkaline solution. 320 

Sophorose (5 mg, 0.015 mM) was treated with aqueous sodium hydroxide (100 mM, 20 ml at pH 321 

13) in a pressure tube at room temperature for 32 h. Samples (1 ml) were taken out every 1 h and 322 

the pH of the sample was adjusted to 6 using glacial acetic acid. Samples were then transferred 323 

into small glass vials and injected into the HPAEC using sodium hydroxide (50 mM) as the mobile 324 

phase.  325 

The same experiment was carried out on sophorose (8 mg), but in an alkaline solution of NaOD 326 

(0.1M, 600 µL in D2O) at room temperature. The progress of the reaction was followed by running 327 

1H-NMR spectra after 1, 12 and 24 h.  328 

 329 

3.6. Hydrolysis of sophorolipids by spent fermentation broth 330 

A sample of a fermentation broth (100 ml) recovered at the end of the fermentation process was 331 

supplied by Croda Biotechnology and was stored in a cold-room for 24 h before being used to test 332 

for the presence of enzyme activity that may hydrolyse sophorolipids (pH 3.5). In separate 333 

experiments, both lactone and acid sophorolipids (0.5 g) were added to a 250 ml clean and 334 

autoclaved conical flask and a third flask without any sophorolipid was used as a control. The 335 

newly prepared mixtures were kept in a shake–flask incubator. The incubator conditions were set 336 

as follows; 30◦C, under agitation at 120 rev/min for 3 days (Stuart Orbital Incubator, SI500). After 337 

24 h intervals, samples (1 ml) were taken and filtered through (0.45 μl disk filter) and the 338 

supernatant was diluted with UPW (2 ml) then transferred into small vials. The sugar composition 339 

of the flasks was assayed by HPAEC-PAD. 340 
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