4 research outputs found
Siglec receptors impact mammalian lifespan by modulating oxidative stress.
Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan
Recommended from our members
Siglec receptors impact mammalian lifespan by modulating oxidative stress.
Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan
A Red Meat-Derived Glycan Promotes Inflammation and Cancer Progression
A well known, epidemiologically reproducible risk factor for human carcinomas is the long-term consumption of “red meat” of mammalian origin. Although multiple theories have attempted to explain this human-specific association, none have been conclusively proven. We used an improved method to survey common foods for free and glycosidically bound forms of the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc), showing that it is highly and selectively enriched in red meat. The bound form of Neu5Gc is bioavailable, undergoing metabolic incorporation into human tissues, despite being a foreign antigen. Interactions of this antigen with circulating anti-Neu5Gc antibodies could potentially incite inflammation. Indeed, when human-like Neu5Gc-deficient mice were fed bioavailable Neu5Gc and challenged with anti-Neu5Gc antibodies, they developed evidence of systemic inflammation. Such mice are already prone to develop occasional tumors of the liver, an organ that can incorporate dietary Neu5Gc. Neu5Gc-deficient mice immunized against Neu5Gc and fed bioavailable Neu5Gc developed a much higher incidence of hepatocellular carcinomas, with evidence of Neu5Gc accumulation. Taken together, our data provide an unusual mechanistic explanation for the epidemiological association between red meat consumption and carcinoma risk. This mechanism might also contribute to other chronic inflammatory processes epidemiologically associated with red meat consumption