367 research outputs found
Effects of UV-B radiation on the structural and physiological diversity of bacterioneuston and bacterioplankton
The effects of UV radiation (UVR) on estuarine bacterioneuston and bacterioplankton were assessed in microcosm experiments. Bacterial abundance and DNA synthesis were more affected in bacterioplankton. Protein synthesis was more inhibited in bacterioneuston. Community analysis indicated that UVR has the potential to select resistant bacteria (e.g., Gammaproteobacteria), particularly abundant in bacterioneuston
Recent outbreaks of infectious syphilis, United Kingdom, January 2012 to April 2014
Six outbreaks of infectious syphilis in the United Kingdom, ongoing since 2012, have been investigated among men who have sex with men (MSM) and heterosexual men and women aged under 25 years. Interventions included case finding and raising awareness among healthcare professionals and the public. Targeting at-risk populations was complicated as many sexual encounters involved anonymous partners. Outbreaks among MSM were influenced by the use of geospatial real-time networking applications that allow users to locate other MSM within close proximity
The role of cigarette butts as vectors of metals in the marine environment: Could it cause bioaccumulation in oysters?
Tobacco is a well-documented threat to human health. However, its environmental impact has only recently been considered. Metals can interact with cigarette butts (CBs) being transported in the marine environment and reaching organisms. To understand this mechanism, a series of metal(loid)s were analyzed in cigarette filters (virgin, artificially smoked, leached in seawater and aged in beach and harbour) as well as in artificially contaminated oyster tissues. Smoked filters showed higher levels of metals compared to the virgin ones showing enrichment factors up to 90, probably associated with tobacco metal content. Once the CBs are delivered to the environment, metals can be leached to seawater until reaching equilibrium, which may be dependent on initial metal levels in the water. Copper was the element with the highest percentage of desorption (91 ± 3%) while strontium showed the lowest percentage (40 ± 0%). CBs revealed a great capacity to accumulate metals from the environment when weathered in contaminated areas. A chemical impact derived from CBs contamination might exist as they serve as a carrier for metals in the marine environment. The release of metals from CBs or the ingestion of metal loaded CBs may pose a toxicological risk for marine organisms via accumulation in their tissues.Versión del edito
The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment
The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.Non peer reviewe
United Nations Environment Programme (UNEP), Questions and Answers about the Effects of Ozone Depletion, UV Radiation, and Climate on Humans and the Environment. Supplement of the 2022 Assessment Report of the UNEP Environmental Effects Assessment Panel
This collection of Questions & Answers (Q&As) was prepared by the Environmental Effects Assessment Panel (EEAP) of the Montreal Protocol under the umbrella of the United Nations Environment Programme (UNEP). The document complements EEAP’s Quadrennial Assessment 2022 (https://ozone. unep.org/science/assessment/eeap) and provides interesting and useful information for policymakers, the general public, teachers, and scientists, written in an easy-to-understand language
Isolation of microplastics in biota-rich seawater samples and marine organisms.
notes: PMCID: PMC3970126types: Journal Article; Research Support, Non-U.S. Gov'tThis is an open access article that is freely available in ORE or from the publisher's web site. Please cite the published version.Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m(-3). The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.Natural Environment Research Council (NERC
Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish
publisher: Elsevier articletitle: Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish journaltitle: Marine Pollution Bulletin articlelink: http://dx.doi.org/10.1016/j.marpolbul.2016.12.055 content_type: article copyright: © 2016 The Authors. Published by Elsevier Ltd
Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report
The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials.
The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically.
As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health.
Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel.
Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information
Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change : UNEP Environmental Effects Assessment Panel, Update 2020
This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.Peer reviewe
- …