127 research outputs found
Habitat modification and landscape fragmentation in agricultural ecosystems: implications for biodiversity and landscape multi-functionality
Biodiversity is the basis of several important ecosystem functions, which guarantee the provision of irreplaceable Nature’s contribution to people, for example food production. Long-term maintenance of such functions and services in agricultural ecosystems thus depend on the maintenance of the biodiversity of agro-ecosystems (Foley et al., 2005; Tomlinson, 2013). Biodiversity loss is therefore a major global environmental problem, with habitat deterioration being one of the main drivers (Tilman, 2001; Brook et al., 2008). As habitat loss is one consequence of agricultural intensification (Benton et al., 2003), and agricultural ecosystems comprise 40% of Earth’s land ecosystems (FAO, 2021), agriculture plays a critical role for biodiversity and ecosystem functioning at large. However, the influence of habitat loss, fragmentation and modifications in agricultural ecosystems on biodiversity and ecosystem functions is still hard to disentangle from that of other mechanisms. For some taxa or ecosystem services (e.g., pollinators and pollination), landscape and habitat modification have been shown to be important, e.g., as increasing habitat fragmentation or crop isolation from natural areas decrease pollination services (Ricketts et al., 2008; Farwig et al., 2009; Garibaldi et al., 2009, 2011).Peer reviewe
Organic Farming Improves Pollination Success in Strawberries
Pollination of insect pollinated crops has been found to be correlated to pollinator abundance and diversity. Since organic farming has the potential to mitigate negative effects of agricultural intensification on biodiversity, it may also benefit crop pollination, but direct evidence of this is scant. We evaluated the effect of organic farming on pollination of strawberry plants focusing on (1) if pollination success was higher on organic farms compared to conventional farms, and (2) if there was a time lag from conversion to organic farming until an effect was manifested. We found that pollination success and the proportion of fully pollinated berries were higher on organic compared to conventional farms and this difference was already evident 2–4 years after conversion to organic farming. Our results suggest that conversion to organic farming may rapidly increase pollination success and hence benefit the ecosystem service of crop pollination regarding both yield quantity and quality
Systems thinking : an approach for understanding 'eco-agri-food systems'
The TEEBAgriFood ‘Scientific and Economic Foundations’ report addresses the core theoretical issues and controversies underpinning the evaluation of the nexus between the agri-food sector, biodiversity and ecosystem services and externalities including human health impacts from agriculture on a global scale. It argues the need for a ‘systems thinking‘ approach, draws out issues related to health, nutrition, equity and livelihoods, presents a Framework for evaluation and describes how it can be applied, and identifies theories and pathways for transformational change
Immediate Risk for Cardiovascular Events and Suicide Following a Prostate Cancer Diagnosis: Prospective Cohort Study
Katja Fall and Fang Fang and colleagues find that men newly diagnosed with prostate cancer are at increased risk of cardiovascular events and suicide
Recommended from our members
Non-bee insects are important contributors to global crop pollination
Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines
The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe
Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non‐crop habitats, and species’ dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7‐ and 1.4‐fold respectively. Arable‐dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield‐enhancing ecosystem services
Investigation of the splitting of quark and gluon jets
The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation TeX . The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution TeX , with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is TeX . Due to non-perturbative effects, the data are below the expectation at small TeX . The transition from the perturbative to the non-perturbative domain appears at smaller TeX for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets
Measurement of the Quark and Gluon Fragmentation Functions in Hadronic Decays
The fragmentation functions and multiplicities in and light quark events are compared. The measured transverse and longitudinal components of the fragmentation function allow the gluon fragmentation function to be evaluated
Measurements of the leptonic branching fractions of the
Data collected with the DELPHI detector from 1993 to 1995 combined with previous DELPHI results for data from 1991 and 1992 yield the branching fractions B({\tau \rightarrow \mbox{\rm e} \nu \bar{\nu}}) = (17.877 \pm 0.109_{stat} \pm 0.110_{sys} )\% and
- …