1,111 research outputs found

    Current review of genetically modified lactic acid bacteria for the prevention and treatment of colitis using murine models

    Get PDF
    Inflammatory Bowel Diseases (IBD) are disorders of the gastrointestinal tract characterized by recurrent inflammation that requires lifelong treatments. Probiotic microorganisms appear as an alternative for these patients; however, probiotic characteristics are strain dependent and each probiotic needs to be tested to understand the underlining mechanisms involved in their beneficial properties. Genetic modification of lactic acid bacteria (LAB) was also described as a tool for new IBD treatments.The first part of this review shows different genetically modified LAB (GM-LAB) described for IBD treatment since 2000.Then, the two principally studied strategies are discussed (i) GM-LAB producing antioxidant enzymes and (ii) GM-LAB producing the anti-inflammatory cytokine IL-10. Different delivery systems, including protein delivery and DNA delivery, will also be discussed. Studies show the efficacy of GM-LAB (using different expression systems) for the prevention and treatment of IBD, highlighting the importance of the bacterial strain selection (with anti-inflammatory innate properties) as a promising alternative. These microorganisms could be used in the near future for the development of therapeutic products with anti-inflammatory properties that can improve the quality of life of IBD patients.Fil: de Moreno, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: del Carmen, Silvina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Chatel, Jean Marc. Institut National de la Recherche Agronomique; FranciaFil: Miyoshi, Anderson. Universidade Federal do Minas Gerais; BrasilFil: Azevedo, Vasco. Universidade Federal do Minas Gerais; BrasilFil: Langella, Philippe. Institut National de la Recherche Agronomique; FranciaFil: Bermudez Humaran, Luis G.. Institut National de la Recherche Agronomique; FranciaFil: Leblanc, Jean Guy Joseph. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin

    A new plasmid vector for DNA delivery using lactococci

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Recombinant Lactococcus lactis fails to secrete bovine chymosine

    Get PDF
    Bovine chymosin is an important milk-clotting agent used in the manufacturing of cheeses. Currently, the production of recombinant proteins by genetically modified organisms is widespread, leading to greatly reduced costs. Lactococcus (L.) lactis, the model lactic acid bacterium, was considered a good candidate for heterologous chymosin production for the following reasons: (1) it is considered to be a GRAS (generally regarded as safe) microorganism, (2) only one protease is present on its surface, (3) it can secrete proteins of different sizes, and (4) it allows for the direct production of protein in fermented food products. Thus, three genetically modified L. lactis strains were constructed to produce and target the three different forms of bovine chymosin, prochymosin B, chymosin A and chymosin B to the extracellular medium. Although all three proteins were stably produced in L. lactis, none of the forms were detected in the extracellular medium or showed clotting activity in milk. Our hypothesis is that this secretion deficiency and lack of clotting activity can be explained by the recombinant protein being attached to the cell envelope. Thus, the development of other strategies is necessary to achieve both production and targeting of chymosin in L. lactis, which could facilitate the downstream processing and recovery of this industrially important protein.Fil: Diniz Luerce, Tessália. Federal University of Minas Gerais. Institute of Biological Sciences. Department of General Biology; BrasilFil: Santiago Pacheco Azevedo, Marcela. Federal University of Minas Gerais. Institute of Biological Sciences. Department of General Biology; BrasilFil: Leblanc, Jean Guy Joseph. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia para Lactobacilos (i); ArgentinaFil: Azevedo, Vasco. Federal University of Minas Gerais. Institute of Biological Sciences. Department of General Biology; BrasilFil: Miyoshi, Anderson. Federal University of Minas Gerais. Institute of Biological Sciences. Department of General Biology; BrasilFil: Santos Pontes, Daniela. State University of Paraiba. Centre of Biological and Applied Social Sciences; Brasi

    A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis

    Get PDF
    Background: Bacterial exported proteins represent key components of the host-pathogen interplay. Hence, we sought to implement a combined approach for characterizing the entire exoproteome of the pathogenic bacterium Corynebacterium pseudotuberculosis, the etiological agent of caseous lymphadenitis (CLA) in sheep and goats. Results: An optimized protocol of three-phase partitioning (TPP) was used to obtain the C. pseudotuberculosis exoproteins, and a newly introduced method of data-independent MS acquisition (LC-MSE) was employed for protein identification and label-free quantification. Additionally, the recently developed tool SurfG+ was used for in silico prediction of sub-cellular localization of the identified proteins. In total, 93 different extracellular proteins of C. pseudotuberculosis were identified with high confidence by this strategy; 44 proteins were commonly identified in two different strains, isolated from distinct hosts, then composing a core C. pseudotuberculosis exoproteome. Analysis with the SurfG+ tool showed that more than 75% (70/93) of the identified proteins could be predicted as containing signals for active exportation. Moreover, evidence could be found for probable non-classical export of most of the remaining proteins. Conclusions: Comparative analyses of the exoproteomes of two C. pseudotuberculosis strains, in addition to comparison with other experimentally determined corynebacterial exoproteomes, were helpful to gain novel insights into the contribution of the exported proteins in the virulence of this bacterium. The results presented here compose the most comprehensive coverage of the exoproteome of a corynebacterial species so far

    Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis

    Get PDF
    BACKGROUND: Brucella abortus is a facultative intracellular pathogen that mainly infects cattle and humans. Current vaccines rely on live attenuated strains of B. abortus, which can revert to their pathogenic status and thus are not totally safe for use in humans. Therefore, the development of mucosal live vaccines using the food-grade lactic acid bacterium, Lactococcus lactis, as an antigen delivery vector, is an attractive alternative and a safer vaccination strategy against B. abortus. Here, we report the construction of L. lactis strains genetically modified to produce B. abortus GroEL heat-shock protein, a candidate antigen, in two cellular locations, intracellular or secreted. RESULTS: Only the secreted form of GroEL was stably produced in L. lactis, suggesting a detrimental effect of GroEL protein when intracellularly produced in this bacterium. Only trace amounts of mature GroEL were detected in the supernatant fraction of induced lactococcal cultures, and the GroEL precursor remained stacked in the cell fraction. Attempts to raise the secretion yields were made, but even when GroEL was fused to a synthetic propeptide, secretion of this antigen was not improved. CONCLUSION: We found that L. lactis is able to produce, and to secrete, a stable form of GroEL into the extracellular medium. Despite the low secretion efficiency of GroEL, which suggest that this antigen interacts with the cell envelope of L. lactis, secretion seems to be the best way to achieve both production and protein yields, regardless of cellular location. The L. lactis strain secreting GroEL has potential for in vivo immunization

    Prospective Uses of Genetically Engineered Lactic Acid Bacteria for the Prevention of Inflammatory Bowel Diseases

    Get PDF
    Inflammatory bowel disease (IBD) is a term used to describe a group of intestinal disorders in which inflammation is a major feature. Although rare forms of IBD exist, these diseases normally pertain to ulcerative colitis (UC) (Head & Jurenka, 2003) and Crohn’s disease (CD) (Baumgart & Sandborn, 2007). There is evidence that these do not represent distinct conditions but rather are the same disease with shared etiological factors (Price, 1992); however, clinical manifestations (such as the exact location of the pathology or the affected individual’s immunological and constitutional endowment) are distinctive between both. Despite many years of study, the exact etiology and pathogenesis of these disorders remain unclear but great advances have been made using experimental animal models and have provided insights into the complex, multi-factorial processes and mechanisms that can result in chronic intestinal inflammation (Elson & Weaver, 2003). The aim of this chapter is to present an overview of the current expanding knowledge of the mechanisms by which lactic acid bacteria and other probiotic microorganisms participate in the prevention and treatment of IBD and how genetic engineering techniques can be used to improve their effectiveness or create novel therapeutic strains. In the following sections, the mechanisms by which these beneficial microorganisms exert their therapeutic effects, which include changes in the gut microbiota, stimulation of the host immune responses, enhancement of intestinal barrier function and reduction of the oxidative stress due to their antioxidant properties will be discussed.Fil: Leblanc, Jean Guy Joseph. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: del Carmen, Silvina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Alvarenga Lima, Fernanda. Universidade Federal de Minas Gerais; BrasilFil: Zurita Turk, Meritxell. Universidade Federal de Minas Gerais; BrasilFil: Miyoshi, Anderson. Universidade Federal de Minas Gerais; BrasilFil: Azevedo, Vasco. Universidade Federal de Minas Gerais; BrasilFil: de Moreno, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin

    Formation of a Proto-Quasar from Accretion Flows in a Halo

    Get PDF
    We present a detailed model for the formation of massive objects at the centers of galaxies. The effects of supernovae heating and the conditions of gas loss are revisited. The escape time of the gas is compared with the cooling time, which provides an additional condition not previously considered. Its consequences for the allowed mass range of the halo is calculated. It is shown that sufficient gas is retained to form massive dark objects and quasars even for moderately massive halos but a decline is expected at low redshifts. Subsequently, a gaseous disk forms with a radial extent of a ~kpc, spun up by tidal torques and magnetized by supernovae fields with fields strengths of 10100μG10-100 \mu G. In a model of a self-similar accretion flow in an initially dominant halo, it is shown that for typical halo parameters, about 108M10^8 M_\odot accretes via small magnetic stresses (or alternatively by self-gravity induced instability or by alpha viscosity) in 10810^8 years into a compact region. A model of a self-gravitating evolution of a compact magnetized disk, which is relevant when a significant fraction of the disk mass falls in, is presented, and it has a rapid collapse time scale of a million years. The two disk solutions, one for accretion in an imposed halo potential and the other for self-gravitating disk, obtained here, have general utility and can be adapted to other contexts like protostellar disks as well.Comment: 15 pages, 6 Figures, In Press in Astronomy & Astrophysic

    Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: Application to a subgrid-scale orography parameterization

    Get PDF
    International audienceRecent works show that the parameters controlling the parameterizations of the physical processes in climate models can be estimated from observations using filtering techniques. In this paper, we propose an offline parameter estimation approach, without estimating the state of the climate model. It is based on the Ensemble Kalman Filter (EnKF) and an iterative estimation of the error covariance matrices and of the background state using a maximum likelihood algorithm. The technique is implemented in a subgrid-scale orography (SSO) parameterization scheme that works in a single vertical column. First, the parameter estimation technique is evaluated using twin experiments. Then, the technique is used with synthetic observations to estimate how the parameters of the SSO scheme should change when the resolution of the input orography dataset of a general circulation model is increased. Our analysis reveals that when the resolution of the orography dataset increases, the scheme should take into account the dynamical sheltering that can occur at low levels between mountain peaks located within the same gridbox area
    corecore