375 research outputs found

    Nurses Involvement in Nursing Home Culture Change: Overcoming Barriers, Advancing Opportunities

    Get PDF
    Summarizes discussions from a 2008 interdisciplinary panel convened to identify facilitators and barriers to nurses' involvement in culture change in nursing homes and actions to promote nurse competencies in resident-directed care. Makes recommendations

    Sediment Quality in Puget Sound Year 3 - Southern Puget Sound

    Get PDF
    As a component of a three-year cooperative effort of the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 locations in southern Puget Sound were collected in 1999 to determine their relative quality based on measures of toxicity, chemical contamination, and benthic infaunal assemblage structure. The survey encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to Oakland Bay, and including Hood Canal. Toxic responses were most severe in some of the industrialized waterways of Tacoma’s Commencement Bay. Other industrialized harbors in which sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port Gamble. Based on the methods selected for this survey, the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5- 38% with the cytochrome P450 HRGS assay. Measurements of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated that 20 of the 100 samples collected had one or more chemical concentrations that exceeded applicable, effects-based sediment guidelines and/or Washington State standards. Chemical contamination was highest in eight samples collected in or near the industrialized waterways of Commencement Bay. Samples from the Thea Foss and Middle Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons. The remaining 12 samples with elevated chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol. The characteristics of benthic infaunal assemblages in south Puget Sound differed considerably among locations and habitat types throughout the study area. In general, many of the small embayments and inlets throughout the study area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and dominance values, although total abundance values were very high in some cases, typically due to high abundance of one organism such as the polychaete Aphelochaeta sp. N1. The majority of the samples collected from passages, outer embayments, and larger bodies of water tended to have infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values. Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms in them. A weight-of-evidence approach used to simultaneously examine all three “sediment quality triad” parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments). Generally, upon comparison, the number of stations with degraded sediments based upon the sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and southern Puget Sound study areas, with the percent of the total study area degraded in each region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively). Overall, the sediments collected in Puget Sound during the combined 1997-1999 surveys were among the least contaminated relative to other marine bays and estuaries studied by NOAA using equivalent methods. (PDF contains 351 pages

    Survey of sediment quality in Sabine Lake, Texas and vicinity

    Get PDF
    The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages

    The double burden of COVID-19 and a major volcanic eruption on local food production and food security in a Small Island Developing State

    Get PDF
    IntroductionSmall Island Developing States have disproportionately high food insecurity rates, related to complex challenges and vulnerabilities. The COVID-19 pandemic highlighted that within these settings, crises often overlap. We aimed to assess the impact of the concurrent COVID-19 pandemic and volcanic eruption on food production and security in St. Vincent and the Grenadines (SVG).MethodsAn interpretive mixed-methods study was conducted among a convenience sample of consenting adults ≥18 years from 100 households in SVG through a cross-sectional survey and participant interviews (10 households) between September 2021 and March 2022. Food insecurity prevalence over the past year was assessed using the Food Insecurity Experience Scale (FIES; Rasch modeling) and impacts to livelihoods from the pandemic and volcanic eruption was assessed using an adapted Caribbean COVID-19 Food Security and Livelihoods Impact Survey (Caribbean COVID-19 FS&amp;L Survey). Data were analyzed using logistic regression.ResultsDuring the pandemic, 59% of the participants reported decreased income, 63% had no access to markets, 81% had no access to food aid; 34% of the participants had a change in food sources, and 81% reported that food production was negatively impacted by the volcanic eruptions, of which 68% reported decreased food production. The interviews highlighted that access to markets were restricted by fear of leaving home and contracting the COVID-19 virus, and participants who received food aid stated that the number of items were not sufficient for larger families. Almost half of the participants were severely food insecure [48% (95% C.I. 31.2,57.8)]; almost two thirds were moderately to severely food insecure [64% (95% C.I. 50.0, 74.2)]; mean FIES score 5.31 (95% C.I. 5.0,5.6). After adjusting for gender, age, education, and household size, moderate to severe food insecurity was associated with no access to food aid during the pandemic and post-eruptions (odds ratio 3.7; 95% confidence interval 1.5, 9.1; p = 0.004).ConclusionFood insecurity rates were high during the COVID-19 pandemic, exacerbated by volcanic eruptions and insufficient access to food aid. Our results suggest the need for the development of strategies and interventions aimed at increasing the resilience of food systems to mitigate the effects of future disasters

    Nowcasting convective activity for the Sahel: a simple probabilistic approach using real‐time and historical satellite data on cloud‐top temperature

    Get PDF
    Flash flooding from intense rainfall frequently results in major damage and loss of life across Africa. In the Sahel, automatic prediction and warning systems for these events, driven by Mesoscale Convective Systems (MCSs), are limited, and Numerical Weather Prediction (NWP) forecasts continue to have little skill. The ground observation network is also sparse, and very few operational meteorological radars exist to facilitate conventional nowcasting approaches. Focusing on the western Sahel, we present a novel approach for producing probabilistic nowcasts of convective activity out to six hours ahead, using the current location of observed convection. Convective parts of the MCS, associated with extreme and heavy precipitation, are identified from 16 years of Meteosat Second Generation thermal–infrared cloud-top temperature data, and an offline database of location-conditioned probabilities calculated. From this database, real-time nowcasts can be quickly produced with minimal calculation. The nowcasts give the probability of convection occurring within a square neighbourhood surrounding each grid point, accounting for the inherent unpredictability of convection at small scales. Compared to a climatological reference, formal verification approaches show the nowcasts to be skilful at predicting convective activity over the study region, for all times of day and out to the six-hour lead time considered. The nowcasts are also skilful at capturing extreme 24-hour rain gauge accumulations over Dakar, Senegal. The nowcast skill peaks in the afternoon, with a minimum in the evening. We find that the optimum neighbourhood size varies with lead time, from 10 km at the nowcast origin to around 100 km at a six-hour lead time. This simple and skilful nowcasting method could be highly valuable for operational warnings across West Africa and other regions with long-lived thunderstorms, and help to reduce the impacts from heavy rainfall and flooding

    Nowcasting flood impacts of convective storms in the Sahel

    Get PDF
    •Flash flooding from intense rainfall frequently results in major damage and loss of life across Africa. Over the Sahel, intense rainfall from Mesoscale Convective Systems (MCSs) is the main driver of flash floods, with recent research showing that these have tripled in frequency over the last 35 years. This climate-change signal, combined with rapid urban expansion in the region, suggests that the socio-economic impacts of flash flooding will become more frequent and severe. Appropriate disaster preparedness, response, and resilience measures are required to manage this increasing risk. •The NFLICS (Nowcasting FLood Impacts of Convective storms in the Sahel) project has co-developed a prototype early warning system for Senegal, incorporating nowcasting of heavy rainfall likelihood and flood risk from MCSs at city and sub-national scales. This system uses remote sensed satellite data and has been developed in partnership with the national meteorological agency (ANACIM) to operate quickly in real-time. To identify convective activity, wavelet analysis is applied to Meteosat data on cloud-top temperature for historical periods (2004 to 2019) and for the start-time of a nowcast. Data on historical convective activity, conditioned on the present location and timing of observed convection, are used to produce probabilistic forecasts of convective activity out to six hours ahead. Verification against the convective activity analysis and the 24-hour raingauge accumulations over Dakar suggests that these probabilistic nowcasts provide useful information on the occurrence of convective activity. The highest skill (compared to nowcasts based solely on climatology) is obtained when the probability of convection is estimated over spatial scales between 100 and 200km, depending on the forecast lead-time considered. Furthermore, recent advances have included incorporation of land surface temperature anomalies to modify nowcast probabilities – this recognises that MCS evolution favour drier land. •A flood knowledge database, compiled with local partners, allows estimation of the flood risk over Dakar given the identified probability of convective activity. The flood hazard is estimated from the probabilistic convective-activity nowcast when combined with information on the historical relationship between convective activity and precipitation totals. Information on the antecedent conditions can also be included, with a higher level of hazard associated with recent rainfall and already-wet conditions. Flood vulnerability is estimated at the local scale from post-event analysis of the 2009 flood events along with information from recent modelling studies and flood-alleviation measures. The combined information from nowcasts of convective-activity and flood-risk is visualised through an interactive desktop GUI and an online portal. Operational trials over the 2020 and 2021 rainy seasons, and during intensive nowcasting testbeds with researchers and forecasters, has shown the utility of these new nowcast products to support Impact-based Forecasting

    Influence of geographical latitude on vitamin D status:cross-sectional results from the BiomarCaRE consortium

    Get PDF
    Even though sunlight is viewed as the most important determinant of 25-hydroxyvitamin D (25[OH]D) status, several European studies have observed higher 25(OH)D concentrations among north-Europeans than south-Europeans. We studied the association between geographical latitude (derived from ecological data) and 25(OH)D status in 6 European countries by using harmonized immunoassay data from 81,084 participants in the Biomarkers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) project (male sex 48.9%; median age 50.8 years; examination period 1984 to 2014). Quantile regression models, adjusted for age, sex, decade and calendar week of sampling, and time from sampling to analysis, were used for between-country comparisons. Up until the median percentile, the ordering of countries by 25(OH)D status (from highest to lowest) was as follows: Sweden (at 65.6 to 63.8 oN), Germany (at 48.4 oN), Finland (at 65.0 to 60.2 oN), Italy (at 45.6 to 41.5 oN), Scotland (at 58.2 to 55.1 oN), and Spain (at 41.5 oN). From the 75th percentile and upwards, Finland had higher values than Germany. As an example, using the Swedish cohort as comparator, the median 25(OH)D concentration was 3.03, 3.28, 5.41, 6.54, and 9.28 ng/mL lower in the German, Finnish, Italian, Scottish, and Spanish cohort, respectively (P-value &lt; 0.001 for all comparisons). The ordering of countries was highly consistent in subgroup analyses by sex, age, and decade and season of sampling. In conclusion, we confirmed the previous observation of a north-to-south gradient of 25(OH)D status in Europe, with higher percentile values among north-Europeans than south-Europeans

    The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    Get PDF
    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions

    Transplacental Transmission of Bluetongue Virus 8 in Cattle, UK

    Get PDF
    To determine whether transplacental transmission could explain overwintering of bluetongue virus in the United Kingdom, we studied calves born to dams naturally infected during pregnancy in 2007–08. Approximately 33% were infected transplacentally; some had compromised health. In all infected calves, viral load decreased after birth; no evidence of persistent infection was found
    corecore