128 research outputs found

    A nexus of intrinsic dynamics underlies translocase priming

    Get PDF
    The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA. Using atomistic simulations, smFRET, and HDX-MS, we reveal multiple dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are functionally important and conserved. Central to the nexus is a slender stem through which rotation of the preprotein clamp of SecA is biased by ATPase domain motions between open and closed clamping states. An H-bonded framework covering most of SecA enables multi-tier dynamics and conformational alterations with minimal energy input. As a result, cognate ligands select preexisting conformations and alter local dynamics to regulate catalytic activity and clamp motions. These events prime the translocase for high-affinity reception of non-folded preprotein clients. Dynamics nexuses are likely universal and essential in multi-liganded proteins.</p

    Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism

    Get PDF
    Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly “catch and release” trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted

    Structural dynamics in the evolution of a bilobed protein scaffold

    Get PDF
    Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein–like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen–Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures

    Bcl-xL acts as an inhibitor of IP3R channels, thereby antagonizing Ca2+-driven apoptosis

    Get PDF
    Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca dynamics by controlling IP receptor (IPR) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IPRs and preventing pro-apoptotic Ca release and Bcl-xL sensitizing IPRs to low [IP] and promoting pro-survival Ca oscillations. We here demonstrate that Bcl-xL too inhibits IPR-mediated Ca release by interacting with the same IPR regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2’s IPR-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IPR and abrogated Bcl-xL’s inhibitory effect on IPRs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xL, suppressed IPR single-channel openings stimulated by sub-maximal and threshold [IP]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IPRs contributes to its anti-apoptotic properties against Ca-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca elevations in wild-type but not in IPR-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca signals and cell death, while Bcl-xL was much less effective in doing so. In the absence of IPRs, Bcl-xL and Bcl-xL were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IPR activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IPR-mediated Ca release and increased the sensitivity towards STS, without altering the ER Ca content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IPR-mediated Ca release and IPR-driven cell death. Our work further underpins that IPR inhibition is an integral part of Bcl-xL’s anti-apoptotic function.The work was supported by Grants from the Research Foundation—Flanders (FWO) (G.0901.18N), by the Research Council of the KU Leuven (OT14/101, C14/19/099, C14/19/101, and AKUL/19/34), the Interuniversity Attraction Poles Program (Belgian Science Policy; IAP-P7/13), the Central European Leuven Strategic Alliance (CELSA/18/040), and the Canadian Institutes Health Research (FDN143312). NR and HI are recipient of postdoctoral fellowships of the FWO; HI obtained a travel grant from the FWO to perform work in DIY’s laboratory. GB, JBP and DIY are part of the FWO Scientific Research Network CaSign (W0.019.17N). Work in DIY’s lab is supported by NIH (NIDCR) grant DE014756. DWA holds the Tier 1 Canada Research Chair in Membrane Biogenesis. The Switch laboratory was supported by the Flanders institute for Biotechnology (VIB), the University of Leuven, the Fund for Scientific Research Flanders (Hercules Foundation/FWO AKUL/15/34—G0H1716N). NL is funded by the Stichting Alzheimer Onderzoek (SAO-FRA 2020/0013) and is recipient of FWO postdoctoral fellowships (12P0919N and 12P0922N to NL)

    Monitoring Protein Secretion in Streptomyces Using Fluorescent Proteins

    Get PDF
    Fluorescent proteins are a major cell biology tool to analyze protein sub-cellular topology. Here we have applied this technology to study protein secretion in the Gram-positive bacterium Streptomyces lividans TK24, a widely used host for heterologous protein secretion biotechnology. Green and monomeric red fluorescent proteins were fused behind Sec (SPSec) or Tat (SPTat) signal peptides to direct them through the respective export pathway. Significant secretion of fluorescent eGFP and mRFP was observed exclusively through the Tat and Sec pathways, respectively. Plasmid over-expression was compared to a chromosomally integrated spSec-mRFP gene to allow monitoring secretion under high and low level synthesis in various media. Fluorimetric detection of SPSec-mRFP recorded folded states, while immuno-staining detected even non-folded topological intermediates. Secretion of SPSec-mRFP is unexpectedly complex, is regulated independently of cell growth phase and is influenced by the growth regime. At low level synthesis, highly efficient secretion occurs until it is turned off and secretory preforms accumulate. At high level synthesis, the secretory pathway overflows and proteins are driven to folding and subsequent degradation. High-level synthesis of heterologous secretory proteins, whether secretion competent or not, has a drastic effect on the endogenous secretome, depending on their secretion efficiency. These findings lay the foundations of dissecting how protein targeting and secretion are regulated by the interplay between the metabolome, secretion factors and stress responses in the S. lividans model

    Preprotein mature domains contain translocase targeting signals that are essential for secretion

    Get PDF
    Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as preproteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion

    Characterization of Sigma Factor Genes in Streptomyces lividans TK24 Using a Genomic Library-Based Approach for Multiple Gene Deletions

    Get PDF
    Alternative sigma factors control numerous aspects of bacterial life, including adaptation to physiological stresses, morphological development, persistence states and virulence. This is especially true for the physiologically complex actinobacteria. Here we report the development of a robust gene deletions system for Streptomyces lividans TK24 based on a BAC library combined with the λ-Red recombination technique. The developed system was validated by systematically deleting the most highly expressed genes encoding alternative sigma factors and several other regulatory genes within the chromosome of S. lividans TK24. To demonstrate the possibility of large scale genomic manipulations, the major part of the undecylprodigiosin gene cluster was deleted as well. The resulting mutant strains were characterized in terms of morphology, growth parameters, secondary metabolites production and response to thiol-oxidation and cell-wall stresses. Deletion of SLIV_12645 gene encoding S. coelicolor SigR1 ortholog has the most prominent phenotypic effect, resulted in overproduction of actinorhodin and coelichelin P1 and increased sensitivity to diamide. The secreted proteome analysis of SLIV_12645 mutant revealed SigR1 influence on trafficking of proteins involved in cell wall biogenesis and refactoring. The reported here gene deletion system will further facilitate work on S. lividans strain improvement as a host for either secondary metabolites or protein production and will contribute to basic research in streptomycetes physiology, morphological development, secondary metabolism. On the other hand, the systematic deletion of sigma factors encoding genes demonstrates the complexity and conservation of regulatory processes conducted by sigma factors in streptomycetes

    Breaching the wall

    No full text
    © 2018, Springer Nature Limited. Protein translocation across bacterial membranes can take many routes through dedicated transport machines. A new study finds that Salmonella Typhi utilizes a distinct pathway to translocate typhoid toxin across the peptidoglycan layer and prime the bacterium for host intoxication.status: publishe
    corecore