19 research outputs found

    Projects to encourage female students in STEM areas

    Full text link
    [EN] Today, the number of female students that enrol in degrees related to Science, Technology, Engineering and Mathematics (STEM) areas is quite low. So, numerous initiatives have arisen to promote these degrees and encourage female students in these areas. In this context, the EuLES Network (u-Learning Environments in Higher Education), an interdisciplinary network created in 2010 at the University of Zaragoza (Spain) to foster research, interaction, cooperation and transfer of knowledge and technologies related to learning and open education, has developed two projects oriented to High School Students: “WikinformáticA! en Aragon” and “Women in STEM by EuLES”. WikinformáticA! en Aragón is a competition for student groups in which they develop a wiki on prominent women in the history of Information and Communication Technology (ICT). The objective is the visibility of women involved in technology. The purpose of the Women in STEM project is to offer testimonies of women in Science, Technology, Engineering and Mathematics to encourage scientific vocations, especially in young people and girls. The project consists of conducting video interviews of women who work or study in these disciplines. All the videos, along with a short biography, are posted on the web.This work was supported by the Universidad de Zaragoza (Spain) [PIIDUZ_18_331].Allueva-Pinilla, AI.; Alejandre-Marco, JL.; Lozano Albalate, MT.; Trillo-Lado, R.; Ilarri-Artigas, S.; Sánchez-Azqueta, C.; Fuentes-Broto, L.... (2019). Projects to encourage female students in STEM areas. En HEAD'19. 5th International Conference on Higher Education Advances. Editorial Universitat Politècnica de València. 1347-1354. https://doi.org/10.4995/HEAD19.2019.9474OCS1347135

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≥ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≥ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≥80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≥80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≥80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≥80 years; p = 0.003).Independent predictors of mortality were age ≥ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≥ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    External loops at the ferredoxin-NADP+ reductase protein-partner binding cavity contribute to substrates allocation

    Get PDF
    Ferredoxin-NADP+ reductase (FNR) is the structural prototype of a family of FAD-containing reductases that catalyze electron transfer between low potential proteins and NAD(P)+/H, and that display a two-domain arrangement with an open cavity at their interface. The inner part of this cavity accommodates the reacting atoms during catalysis. Loops at its edge are highly conserved among plastidic FNRs, suggesting that they might contribute to both flavin stabilization and competent disposition of substrates. Here we pay attention to two of these loops in Anabaena FNR. The first is a sheet-loop-sheet motif, loop102-114, that allocates the FAD adenosine. It was thought to determine the extended FAD conformation, and, indirectly, to modulate isoalloxazine electronic properties, partners binding, catalytic efficiency and even coenzyme specificity. The second, loop261-269, contains key residues for the allocation of partners and coenzyme, including two glutamates, Glu267 and Glu268, proposed as candidates to facilitate the key displacement of the C-terminal tyrosine (Tyr303) from its stacking against the isoalloxazine ring during the catalytic cycle. Our data indicate that the main function of loop102-114 is to provide the inter-domain cavity with flexibility to accommodate protein partners and to guide the coenzyme to the catalytic site, while the extended conformation of FAD must be induced by other protein determinants. Glu267 and Glu268 appear to assist the conformational changes that occur in the loop261-269 during productive coenzyme binding, but their contribution to Tyr303 displacement is minor than expected. Additionally, loop261-269 appears a determinant to ensure reversibility in photosynthetic FNRsPeer reviewe

    A hydrogen bond network in the active site of Anabaena ferredoxin-NADP + reductase modulates its catalytic efficiency

    Get PDF
    Ferredoxin-nicotinamide-adenine dinucleotide phosphate (NADP+) reductase (FNR) catalyses the production of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) in photosynthetic organisms, where its flavin adenine dinucleotide (FAD) cofactor takes two electrons from two reduced ferredoxin (Fd) molecules in two sequential steps, and transfers them to NADP+ in a single hydride transfer (HT) step. Despite the good knowledge of this catalytic machinery, additional roles can still be envisaged for already reported key residues, and new features are added to residues not previously identified as having a particular role in the mechanism. Here, we analyse for the first time the role of Ser59 in Anabaena FNR, a residue suggested by recent theoretical simulations as putatively involved in competent binding of the coenzyme in the active site by cooperating with Ser80. We show that Ser59 indirectly modulates the geometry of the active site, the interaction with substrates and the electronic properties of the isoalloxazine ring, and in consequence the electron transfer (ET) and HT processes. Additionally, we revise the role of Tyr79 and Ser80, previously investigated in homologous enzymes from plants. Our results probe that the active site of FNR is tuned by a H-bond network that involves the side-chains of these residues and that results to critical optimal substrate binding, exchange of electrons and, particularly, competent disposition of the C4n (hydride acceptor/donor) of the nicotinamide moiety of the coenzyme during the reversible HT event. © 2013 Elsevier B.V.Peer Reviewe

    Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes

    No full text
    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H-ThnA4-ThnA3-ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H-ThnA4-ThnA3-ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous inductionThis work was supported by Spanish Ministry of Science and Innovation grants BIO2011-24003, CSD2007-00005, BIO2013-42978-P, and B-18 DGA-FEDER.Peer Reviewe

    The C-terminal extension of bacterial flavodoxin-reductases: Involvement in the hydride transfer mechanism from the coenzyme

    Get PDF
    To study the role of the mobile C-terminal extension present in bacterial class of plant type NADP(H):ferredoxin reductases during catalysis, we generated a series of mutants of the Rhodobacter capsulatus enzyme (RcFPR). Deletion of the six C-terminal amino acids beyond alanine 266 was combined with the replacement A266Y, emulating the structure present in plastidic versions of this flavoenzyme. Analysis of absorbance and fluorescence spectra suggests that deletion does not modify the general geometry of FAD itself, but increases exposure of the flavin to the solvent, prevents a productive geometry of FAD:NADP(H) complex and decreases the protein thermal stability. Although the replacement A266Y partially coats the isoalloxazine from solvent and slightly restores protein stability, this single change does not allow formation of active charge-transfer complexes commonly present in the wild-type FPR, probably due to restraints of C-terminus pliability. A proton exchange process is deduced from ITC measurements during coenzyme binding. All studied RcFPR variants display higher affinity for NADP+ than wild-type, evidencing the contribution of the C-terminus in tempering a non-productive strong (rigid) interaction with the coenzyme. The decreased catalytic rate parameters confirm that the hydride transfer from NADPH to the flavin ring is considerably hampered in the mutants. Although the involvement of the C-terminal extension from bacterial FPRs in stabilizing overall folding and bent-FAD geometry has been stated, the most relevant contributions to catalysis are modulation of coenzyme entrance and affinity, promotion of the optimal geometry of an active complex and supply of a proton acceptor acting during coenzyme binding. © 2013 Elsevier B.V.Peer Reviewe

    Structural backgrounds for the formation of a catalytically competent complex with NADP(H) during hydride transfer in ferredoxin–NADP+ reductases

    Get PDF
    AbstractThe role of the highly conserved C266 and L268 of pea ferredoxin–NADP+ reductase (FNR) in formation of the catalytically competent complex of the enzyme with NADP(H) was investigated. Previous studies suggest that the volume of these side-chains, situated facing the side of the C-terminal Y308 catalytic residue not stacking the flavin isoalloxazine ring, may be directly involved in the fine-tuning of the catalytic efficiency of the enzyme. Wild-type pea FNR as well as single and double mutants of C266 and L268 residues were analysed by fast transient-kinetic techniques and their midpoint reduction potentials were determined. For the C266A, C266M and C266A/L268A mutants a significant reduction in the overall hydride transfer (HT) rates was observed along with the absence of charge-transfer complex formation. The HT rate constants for NADPH oxidation were lower than those for NADP+ reduction, reaching a 30-fold decrease in the double mutant. In agreement, these variants exhibited more negative midpoint potentials with respect to the wild-type enzyme. The three-dimensional structures of C266M and L268V variants were solved. The C266M mutant shows a displacement of E306 away from the relevant residue S90 to accommodate the bulky methionine introduced. The overall findings indicate that in FNR the volume of the residue at position 266 is essential to attain the catalytic architecture between the nicotinamide and isoalloxazine rings at the active site and, therefore, for an efficient HT process. In addition, flexibility of the 268–270 loop appears to be critical for FNR to achieve catalytically competent complexes with NADP(H)

    Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes

    No full text
    Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP+ reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP+ coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor-acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution. © 2014 Elsevier B.V.Peer Reviewe
    corecore