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To study the role of the mobile C-terminal extension present in bacterial class of plant type NADP(H):ferre-
doxin reductases during catalysis, we generated a series of mutants of the Rhodobacter capsulatus enzyme
(RcFPR). Deletion of the six C-terminal amino acids beyond alanine 266 was combined with the replace-
ment A266Y, emulating the structure present in plastidic versions of this flavoenzyme. Analysis of
absorbance and fluorescence spectra suggests that deletion does not modify the general geometry of FAD
itself, but increases exposure of the flavin to the solvent, prevents a productive geometry of FAD:
NADP(H) complex and decreases the protein thermal stability. Although the replacement A266Y partially
coats the isoalloxazine from solvent and slightly restores protein stability, this single change does not
allow formation of active charge-transfer complexes commonly present in the wild-type FPR, probably
due to restraints of C-terminus pliability. A proton exchange process is deduced from ITC measurements
during coenzyme binding. All studied RcFPR variants display higher affinity for NADP+ than wild-type,
evidencing the contribution of the C-terminus in tempering a non-productive strong (rigid) interaction
with the coenzyme. The decreased catalytic rate parameters confirm that the hydride transfer from
NADPH to the flavin ring is considerably hampered in the mutants. Although the involvement of the C-
terminal extension from bacterial FPRs in stabilizing overall folding and bent-FAD geometry has been
stated, the most relevant contributions to catalysis are modulation of coenzyme entrance and affinity,
promotion of the optimal geometry of an active complex and supply of a proton acceptor acting during
coenzyme binding.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Plant-type ferredoxin/flavodoxin:NADP(H) reductases (FNRs) are
monomeric FAD-dependent enzymes that catalyse the electron transfer
from reduced ferredoxin (Fd), or flavodoxin (Fld), to NADP+ in the pho-
tosynthetic electron transport chain, or the reverse reduction providing
low-potential electrons for a variety of reactions such as nitrogen fixa-
tion, sulphur assimilation and amino acid biosynthesis [1–7]. Sequence
and structural analysis of different FNRs led to subdivision of the family
into two classes: the plastidic type, consistent of proteins present in
cyanobacteria and chloroplasts from plants and algae, and the bacterial
type enclosing flavodoxin-NADPH reductases, known as FPRs, present
in eubacteria [2,8,9]. In organisms displaying oxygenic photosynthesis,
the reactions catalysed by FNR are displaced towards NADP+ reduction,
with turnovers in the 200–600 s−1 range for the plastidic enzymes
[10–12]. Differently, bacterial FPRs catalyse the reduction of the protein
substrate by NADPH with estimated rates in the 1–200 s−1 range
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[6,7,13–17] being this activity in eubacteria related to differentmetabol-
ic pathways including nitrogen fixation and response to oxidative stress
[4,6,14].

The catalytic mechanism for plastidic FNRs has been thoroughly
characterised using enzymes from spinach, pea and the cyanobacterium
Anabaena. A sequential ordered mechanism of catalysis was early pro-
posed, including the ternary complex as required intermediate, and
being binding of NADP+ the leader substrate by increasing the rate of
FNR reduction from Fdrd and facilitating dissociation of Fdox [18]. Later
on, residues involved in the stabilisation of the ternary catalytic com-
plex and particularly in the allocation of the nucleotide on the enzyme
structure to produce the catalytically competent conformation have
been identified [3,19–23]. The FNR/FPR ability to split electrons
between obligatory two-electrons and mono-electron carriers is a con-
sequence of the biochemical properties within the protein environment
of their FAD prosthetic group. Thus, its oxido-reduction properties and
the optimal disposition of the isoalloxazine and the nicotinamide
reacting rings during the hydride transfer (HT) event are highly modu-
lated by the interactions established with the protein chain [24–26].

Despite the low sequence identity (Fig. 1), the structures of plastidic-
andbacterial-type FNRs indicate that they share some common structural
and functional characteristics. They all display a twodomain arrangement
(NADP+- and FAD-binding domains) and are highly specific towards
NADPH versus NADH [15,27–31]. Moreover, they share six conserved
peptide segments involved in FAD- or NADP(H)-binding and the position
of the flavin is held at the interface between the two structural domains,
being the isoalloxazine moiety stacked at its si-face by a conserved
Fig. 1. Sequence alignments of plant-type FNRs. Conserved regions in plant-type FNRs, regardle
showed in bold. Plastidic-type characteristic aminoacids interacting with the FAD adenosine ar
aromatic residue (Tyr79 in Anabaena FNR and Tyr66 in Rhodobacter
capsulatus FPR (RcFPR)). However, the structural analysis also reveals
specific structural features of each group that could be associated to
their different catalytic function, turnover, reaction direction and protein
partner. In particular, the conformation of the FAD cofactor is open in
plastidic FNRs but bended in bacterial FPRs [15,30–32]. Besides, bacterial
enzymes carry an extended C-terminus when compared with plastidic
ones, while the later ones invariantly end at a C-terminal Tyr that stacks
against the re-face of the isoalloxazine. The C-terminal extension present
in bacteria FPRs is involved inNADP(H) efficient binding, allowing affinity
levels compatible to catalysis [2,33]. FPRs can be further classified in two
groups depending on the nature of the aminoacid located at the re-face of
the isoalloxazine at the position of the C-terminal Tyr in plastidic FNRs,
which can be aliphatic (subclass I) as in RcFPR, or aromatic (subclass II)
as in Escherichia coli FPR [2].

Mutational analysis, fast kineticmethods and experimental and com-
putational structural approaches have been thoroughly used to charac-
terise coenzyme binding and HT for plastidic FNRs [12,19–21,24,34,35].
The nicotinamide moiety of the coenzyme (NMN) approaches the isoal-
loxazine ring on its re-face, while the C-terminal Tyr side-chain is pro-
posed to get slightly displaced letting the rings to stack. However, it is
proposed to remain in the catalytic site preventing the formation of a
strong [isoalloxazine-H]−:NADP+ close contact ionic pair, a fact related
with the forward (photosynthetic) and the backward (non-photosyn-
thetic) HT reactions taking placewith similar rate constants in these en-
zymes [21,36]. The occurrence of charge transfer complexes (CTC) and
similar HT rates observed for RcFPR, suggested that an equivalent
ss of their plastidic or bacterial origin are shaded in purple, and their consensus sequences
e shaded in green.
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mechanism may be happening in bacterial homologues [33]. Moreover,
structural analysis of the RcFPR:NADP+ crystallised complexes reveals
that the six-residue C-terminal tail present in RcFPR might be displaced
to allow entrance of the NMN in the catalytic cavity. In addition, this
movement could modulate nicotinamide occupancy, analogously to
the C-terminal Tyr in plastidic enzymes [20,33].

To explore the involvement of the C-terminal extension occurring in
the bacterial subclass I FPR in nucleotide binding and HT, we generated
a series of mutants in RcFPR either lacking the aminoacid extension be-
yond Ala266 and/or replacing this residue by a Tyr; namely A266Y,
A266-Δ267–272 and A266Y-Δ267–272. Biochemical and structural analysis
of the mutants provides some clues about the contribution of the C-
terminal extension to the oxido-reduction properties of the flavin, the
coenzyme allocation in the catalytic competent organization, the HT
process and the general stability of these bacterial flavoenzymes.

2. Materials and methods

2.1. Expression vector design, protein expression and purification

To obtain the deletionmutants at the C-terminal extension of RcFPR,
the WT coding sequence in the plasmid pGEM-fpr-Nco [14] was ampli-
fied using oligonucleotide 5′-ATTgCCATggCgAAAgTCCTgC-3′ as forward
primer, and 5′-TCAggCCTTTTCCACCACgAA-3′, 5′-TCAgATgCCTTCgCCgA
CgAAgTACTTTTCCACCACg-3, 5′-TCAggCCTTTTCCACCACgAA-3′, and 5′-
gTCAATACTTTTCCACCACGAATTCg-3′ as reverse primers for WT,
A266Y, A266-Δ267–272 and A266Y-Δ267–272 respectively. The products
of the PCR amplifications were introduced into the pGEM®-T easy vec-
tor, using the ligation mixture to transform E. coli DH5α. After plasmid
DNA isolation from transformed cells, the NcoI–SacI fragment of each
clone was ligated into compatible sites of the expression vector pET-
32a that allows expression of recombinant proteins as tioredoxin-His6
fusion, easily purified trough Ni-NTA (Quiagen) affinity chromatogra-
phy. Mutations were verified by DNA sequence analysis after amplifica-
tion in the same strain. RcFPR variants were overexpressed in E. coli
BL21(DE3) pLys transformants after induction with 0.50 mM IPTG at
20 °C for 16 h, purified trough affinity chromatography and subse-
quently dialysed against 50 mM Tris–HCl pH 8.0. The fusion proteins
were finally digested with enterokinase and the released tioredoxin-
His6 tag was removed by Q-Sepharose chromatography procedure.

2.2. Spectroscopic and fluorescence measurements

Absorption spectra were recorded on a Shimadzu UV-2450 spectro-
photometer. Titrations of RcFPRox with NADP+ were performed spec-
trophotometrically at 25 °C. The enzyme was diluted to a final
concentration between 20 and 70 μM in 50 mM Tris–HCl, pH 8.0. Dif-
ference spectra were computed by subtracting from each spectrum
the one obtained in the absence of ligand, after correction for dilution.
Dissociation constants (Kd) were calculated by fitting data sets to the
equation of a rectangular hyperbole using SigmaPlot (Systat Software
Inc., Point Richmond, CA). The estimated error in the measured param-
eters is ±15% in Kd, and±5% in Δεmax. Phototitrations were performed
at 10 °C in 50 mM Tris–HCl, pH 8.0, under anaerobic conditions. The
spectrophotometer cell contained 20 μM RcFPR, 3 mM EDTA and 2 μM
5-deazariboflavin. Stepwise reduction of the RcFPR variants was
achieved by light irradiation from a 250 W slide projector for different
periods of time, and the UV–vis spectrum was then recorded in a Cary
100 spectrophotometer.

The flavin fluorescence was monitored using a Varian Cary Eclipse
fluorescence spectrophotometer interfaced with a personal computer.
The solution for fluorescence measurements contained 3 μM proteins
in 50 mMTris–HCl pH 8.0. The sampleswere previously filtered through
a desalting column. FAD fluorescence (λexc = 445 nm; λem = 500–
600 nm) was registered both before and after the addition of increasing
concentrations of NADP+ at 25 °C. To determine Kd for binding of
nucleotide to the enzyme, maximum emission data were fitted to the
equation of a rectangular hyperbole using SigmaPlot (Systat Software
Inc., Point Richmond, CA) and estimated with an error of ±15%.
Quenching of flavin fluorescence by iodine was used to investigate the
relative accessibility of FAD in the RcFPRWT andmutants [37]. The emis-
sion fluorescence at 525 nm (λ of emission 445 nm) of a 2 mL sample of
RcFPR in 50 mM Tris–HCl, pH 8.0 was determined during the titration of
KI in cuvettes with a 1-cm pathlength at 25 °C. The samples were previ-
ously filtered through a sephadex G25 column to remove free FAD.

2.3. ThermoFAD experimental setup

Experiments were performed using a real-time PCR detection sys-
tem with 96-well RT-PCR plates (Mastercycler® ep realplex2,
Eppendorf). Measurements were performed using an excitation wave-
length range between 470 and 500 nm and a SYBR Green fluorescence
emission filter (523–543 nm) which overlaps the fluorescence spec-
trum of the isoalloxazine ring (470–570 nm) [38]. The flavoprotein
concentration required for optimal signal-to-noise ratio was initially
evaluated usingWT RcFPR as a benchmark. Unfolding curves were gen-
erated using a temperature gradient from 20 to 85 °C, performing a
fluorescence measurement after every 1 °C increase. All experiments
were performed at least three times, and the reported Tm values are
based on themean values determined from the peaks of the derivatives
of the experimental data. The best concentrations for ThermoFAD anal-
ysis were between 0.5 and 1 mg/mL in a final volumeof 20 μL in 50 mM
Tris–HCl, pH 8.0, and all subsequent experiments were carried out
using protein concentrations in this range.

2.4. Isothermal titration calorimetry (ITC)

ITC experiments were conducted using a high precision VP-ITC sys-
tem (MicroCal LLC, Northampton, MA). Buffered solutions of RcFPR vari-
ants (2–15 μM)were titratedwith NADP+ (40–450 μM) prepared in the
same buffer. Measurements were carried out in 50 mM Tris–HCl and
50 mM and MOPS, both at pH 8.0, two buffers with different ionisation
enthalpies: MOPS, 5.05 kcal/mol and Tris–HCl, 11.35 kcal/mol [39].
Each titration experiment was initiated by a 4 μL injection (not used in
the final data analysis), followed by 28 stepwise injections of 10 μL. The
binding enthalpy (ΔH), the association constant (Ka), and the stoichiom-
etry of the binding were obtained through least-squares non-linear re-
gression of the experimental data to a model for one binding site
implemented in Origin 7.0 (OriginLab). The determined Ka does not con-
tain any buffer contribution as long as the pH of the experiment is close
enough to the pKa of the employed buffer. The buffer-independent bind-
ing enthalpy,ΔH0, can be obtained by eliminating the contribution of the
buffer ionisation, ΔHion, from the observed binding enthalpy, ΔH,
according to: ΔH = ΔH0 + nH +ΔHion, being nH+ the net number of
protons exchanged between the complex and the bulk solution [40].
The free energy change (ΔG) and the entropy change (ΔS)were obtained
from basic thermodynamic relationships. The estimated error in the
measured parameters is ±15% in Ka and Kd, ±2–5% in ΔG, and ±5–
10% in ΔH and−TΔS.

2.5. Steady-state kinetic analysis

Diaphorase activities were measured at 25 °C in reaction
mixtures containing 50 mM Tris–HCl, pH 7.2, 3 mM glucose 6-
phosphate, 0.6 mM NADP+, 1 unit of glucose-6-phosphate dehydro-
genase, and either 100 μM 2,6-dichlorophenolindophenol (DCPIP)
or 1 mM K3Fe(CN)6 as electron acceptor [20]. After the addition of
20 nM enzyme, the reactions weremonitored spectrophotometrical-
ly by following substrate reduction at 420 nm for K3Fe(CN)6
(ε420 = 1 mM−1 cm−1) or at 600 nm (ε600 = 21 mM−1 cm−1)
for DCPIP. For the estimation of kinetic parameters of the diaphorase
reaction, measurements were carried out at different NADPH
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concentrations, at a fixed saturating concentration of K3Fe(CN)6 or
DCPIP. Steady state data were fitted to the theoretical curves using
SigmaPlot (Systat Software Inc., Point Richmond, CA). The estimated
error in themeasured parameters is±10–15% inKm, and±5–10% in kcat.

2.6. Stopped-flow pre-steady-state kinetic measurements

Reduction of A266Y, A266-Δ267–272 and A266Y-Δ267–272 RcFPRox by
NADPH was analysed by stopped-flow in 50 mM Tris–HCl, pH 8.0 at
25 °C under anaerobic conditions. The final RcFPR concentration was
8 μM, while an 8–250 μM range was used for the nucleotide. Reactions
were analysed by following the evolution of the absorption spectra
(400–1000 mm) using an Applied Photophysics SX17.MV stopped-
flow and a photodiode array detector. Multiple wavelength absorption
data were collected and processed using the X-Scan software (Applied
Photophysics Ltd.). The instrument dead time was 2–3 ms under these
conditions. Time spectral deconvolution was performed using Pro-
Kineticist (Applied Photophysics Ltd.) by data fitting to a two step,
A → B → C, model, allowing estimation of the observed conversion
rate constants (kobs: kA → B, kB → C) [36]. A, B and C are spectral species,
reflecting a distribution of enzyme intermediates (reactants, CTCs,
Michaelis-complexes, products) at a certain point along the reaction
time course, and do not necessarily represent a single distinct enzyme
intermediate. Model validity was assessed by lack of systematic devia-
tions from residual plots at differentwavelengths, inspection of calculat-
ed spectra and consistence among the number of significant singular
values with the fitted model. kobs showed a saturation profile on the
NADPH concentration that fit to the equation

kobs ¼
kHT NADPH½ �
NADPH½ � þ Kd

and allowed determination of Kd
NADPH aswell as theHT rate constant, kHT

[36]. Theestimated error in themeasured parameters is±15% inKd
NADPH,

and ±10% in kHT.

2.7. Crystal growth, data collection and structure refinement

Crystals of the A266Y-Δ267–272 RcFPR mutant were grown at 18 °C
using the hanging-drop vapour diffusion method by mixing 1 μL pro-
tein solution containing 50 mM Tris–HCl, pH 8.0, 50 mM NaCl and
20 mM NADP+ with 1 μL of crystallisation buffer containing 100 mM
BIS–Tris–HCl, pH 5.5 and 21% (wt/vol) PEG 3350. The best crystals
were grown with protein at 8 mg/mL. They belong to the trigonal
P3121 space group and display the following unit cell dimensions:
a = b = 74.96 Å, c = 188.62 Å. Crystals were cryo-protected by the
crystallisation buffer with a supersaturated solution of sodium acetate
and frozen in liquid nitrogen. Diffraction data were collected at the
ESRF (Experimental Synchrotron Research Facility at Grenoble, France)
beamline ID14-4 to the resolution of 1.7 Å. Data were processed using
iMOSFLM [41] and SCALA [42] programmes from the CCP4 package
[43]. The data statistics are summarised in Table SP1. The structure
was solved by molecular replacement using the MOLREP programme
[44] with the native RcFPR structure (PDB code 2bgi) as the first search
model. A unique and unambiguous solution for the rotation and trans-
lation functions was obtained. There are two A266Y-Δ267–272 RcFPR
molecules in the asymmetric unit of the crystal. Phases calculated
from the initial solution were subjected to alternated cycles of refine-
ment with PHENIX programme [45] and manual model building with
COOT [46]. The good quality of the final electron density maps allowed
us tomodel 251 aminoacids for the polypeptide chain (residues 16–266
in chains A and B). One FAD was found bound to each RcFPR molecule
and, also, one sulphate ion in molecule A. The quality of the final geom-
etrywas checkedwith PROCHECK [47]. The finalmodel has a Rwork/Rfree

of 17.7%/19.5%. The refinement statistics are summarised in Table SP1.
Atomic coordinates and structure factors are deposited in the PDB
with the accession code: 4K1X.

3. Results

3.1. Spectroscopic characterisation of the RcFPR variants

The A266Y, A266-Δ267–272 and A266Y-Δ267–272 RcFPR mutants
were isolated as recombinant fusion proteins from cleared extracts
of E. coli transformants which rendered similar yields than the WT
enzyme after affinity chromatography purification and removal of
the fused tioredoxin-His6 tag. Their UV–vis spectral shape resem-
bled that of WT RcFPR, although maxima positions of the flavin ab-
sorbance bands resulted slightly displaced to larger wavelengths
(Fig. 2A, Table SP2). Extinction coefficients of the flavin absorption
peak at 450 nm (band-I) determined by protein denaturation and
FAD release, for WT (ε = 11.7 mM−1 cm−1) and A266-Δ267–272

RcFPRs (ε = 11.3 mM−1 cm−1) resulted similar to that of the free
FAD (ε = 11.5 mM−1 cm−1), indicating that the protein environment
barely affects this parameter. Replacement of Ala266with a Tyr caused a
decrease of extinction coefficients (ε = 10.12 mM−1 cm−1 for A266Y
and ε = 9.73 mM−1 cm−1 for A266Y-Δ267–272) to values similar to
those occurring in plastidic FNRs (ε = 9.4 mM−1 cm−1 for Anabaena
FNR), where a highly conserved Tyr stacks against the re-face of the
isoalloxazine.

Emission spectra of FAD in the RcFPR variants resulted in the maxi-
ma generally displaced 7–12 nm to higher wavelengths with respect
to the WT (Fig. 2B, Table SP3), particularly when Ala266 is replaced by
Tyr. However, this substitution only caused subtle changes in the rela-
tive intrinsic fluorescence of the bound flavin, whereas deletion of the
267–272 tail led to a 6-fold increase of this parameter and the simulta-
neous replacement of Ala266 to Tyr again reduced it. This later effect is
probably due to quenching phenomena caused by the presence of the
aromatic side-chain. These results also suggest a greater exposure of
the isoalloxazine ring towards the solvent in the deletion mutants.
This hypothesis was further confirmed by the addition of iodine as fluo-
rescence quencher that allows quantification of the accessibility of the
triple ring. ForWT RcFPR the exposure of the isoalloxazine was evaluat-
ed as 40% of the free FAD, while a value near 100% was obtained for all
three studied variants. The augmented exposure of the cofactor towards
the solvent implies a relaxation of the protein environment that can be
visualised following the ThermoFAD protocol [38]. This procedure
allowed the surveillance of the FADfluorescence during a thermal dena-
turing process revealing decreases of 16.5 °C, 12 °C and 10.5 °C in the
Tm of the A266-Δ267–272, A266Y-Δ267–272 and A266Y mutants when
compared to the WT RcFPR (Fig. 2C).

All RcFPR variants resulted efficiently photoreduced (Fig. 2D and E),
but the process showed important differences regarding stabilisation of
the neutral semiquinone described for theWT (characterised by an ab-
sorbancemaximumat 600 nm) [33]. No semiquinone stabilisation at all
was observed for the A266Y variant and very little was detected for
A266Y-Δ267–272 RcFPR. A266-Δ267–272 RcFPR suffered several spectral
band displacements, including the intermediate stabilisation of a
broad band centred at ~550 nm and the displacement of the band II of
the flavin up to 340 nm. Such observations might be compatible with
the transient stabilisation of traces of an anionic semiquinone along
the photoreduction of this variant [48].

3.2. Binding of the coenzyme to the RcFPR variants

Difference spectra of the RcFPR:NADP+ complexes were obtained to
investigate the relative architecture of the reacting isoalloxazine and
nicotinamide rings. NADP+ binding to theWT RcFPR produced a differ-
ence spectrum characterised by a band at 505 nm and a valley around
434 nm [33]. Both of these features are also observed for the interaction
of chloroplastic FNRs (but not cyanobacterial), and have been related to
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Fig. 2. Spectroscopic characterisation of the RcFPR variants. (A) UV visible absorption spectra, (B) fluorescence emission spectra and (C) thermogram for the denaturation follow-
ed by FAD liberation of WT (solid line), A266Y (dashed–dotted line), A266-Δ267–272 (dotted line) and A266Y-Δ267–272 (dashed line) RcFPR. Absorbance spectra obtained along
photoreduction of (D) A266-Δ267–272 RcFPR (WT in the inset) and (E) A266Y-Δ267–272 RcFPR (A266Y in the inset). All photoreduction measurements were recorded using 20 μM
flavoenzyme in 50 mM Tris–HCl, pH 8.0 at 25 °C.

Table 1
Interaction parameters for the binding of NADP+ to the different RcFPR variants.

Differential
spectroscopya

Fluorescenceb

Kd (μM) λmax (nm) Δεmax (mM−1 cm−1) Kd (μM)

WT 222 505 0.31 215
A266-Δ267–272 10.0 520 0.14 7.0
A266Y 14.1 515 0.06 16
A266Y-Δ267–272 6.0 518 0.16 4.0

Isothermal titration calorimetryc

Kd (μM) ΔG°
(kcal/mol)

ΔH°
(kcal/mol)

–TΔS°
(kcal/mol)

nH+

WT 66 −5.7 −2.6 −3.1 0.11
A266-Δ267–272 2.0 −7.8 −8.0 +0.2 −1.03
A266Y 0.87 −8.3 +2.4 −10.7 −0.24
A266Y-Δ267–272 4.4 −7.3 −5.8 −1.5 −0.48

a Data in 50 mM Tris–HCl, pH 8.0 at 25 °C.
b Data in 10 mM Tris–HCl, pH 8.0 at 25 °C.
c Frommeasurements recorded in 50 mMTris–HCl and in 50 mMMOPS both at pH 8.0.
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an optimized geometry of the isoalloxazine:nicotinamide interaction
ready for HT [12,20]. Difference spectra obtained for the variants
under similar conditions showed displacement to longer wavelengths
and reduction in intensity of the 505 nm band, while the valley also
shifted towards ~450 nm, suggesting modification of the isoalloxazine
environment upon coenzyme binding with respect to WT. Saturation
of the difference spectra upon increasing NADP+ concentration allowed
determination ofKd

NADP+ aswell as of themagnitude of the spectroscop-
ic change, Δε (Table 1). The affinity for NADP+ considerably increased
for all RcFPR variants with respect to the WT, particularly for A266Y-
Δ267–272 (up to 35-fold). However, Δε in the ~505 nm band, reflecting
the occupancy of the nicotinamide into the flavin environment, de-
creased up to 2-fold in the A266-Δ267–272 and A266Y-Δ267–272 RcFPRs
and up to 6-fold for A266Y RcFPR. Binding of NADP+ to WT RcFPR pro-
duces a raise on the fluorescence intensity that has been related to a
greater exposure of the flavin isoalloxazine ring upon nicotinamide
location at the active site. Changes in fluorescence showed also a satura-
tion profile for all variants that enables determination of Kd

NADP+

(Table 1) in agreement with those obtained by difference spectroscopy.
Fluorescence increase uponNADP+ binding by themutated species was
always lower than the corresponding to WT RcFPR.

Coenzyme binding analysis based on flavin absorbance or fluores-
cence, mainly sense changes in the isoalloxazine environment forced
by coenzyme location in the flavoprotein, and particularly by the final
geometry of nicotinamide:isoalloxazine species. Calorimetric measure-
ments also allow estimation of overall complex formation parameters
independently of the sticking at the isoalloxazine environment. Analysis
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by ITC of NADP+ binding confirmed that all mutations significantly
increased the affinity of RcFPR for the nucleotide, and indicated that
they considerably altered the enthalpic and entropic contributions to
the binding process, particularly in the A266-Δ267–272 variant (Table 1,
Fig. 3). In WT RcFPR both enthalpic and entropic changes favourably
contribute to coenzyme binding. Removal of the C-terminal tail in the
A266-Δ267–272 mutant enhances the affinity for the coenzyme (30-
fold), as a consequence of making the enthalpic contribution much
more favourable than in the WT, though the entropy slightly opposes
the interaction. The sole replacement of A266Y has a different effect
displaying higher entropic contributions to the binding process, despite
this variant also binds the coenzyme 75-times stronger than theWT. Fi-
nally, both enthalpic and entropic contributions also make more
favourable the binding of the coenzyme to A266Y-Δ267–272 RcFPR than
in WT (Table 1, Fig. 3). Additionally, our data indicate that the WT and
A266Y variants bind NADP+ with negligible net proton exchange with
the solvent, displaying a nH+ value near zero. However, the removal
of the C-terminus in the deletion mutants shows that the coenzyme
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binding process is coupled to the release of one proton from the protein
(Table 1).

3.3. Influence of the introduced mutations in the steady-state and
pre-steady-state kinetic parameters of the HT from NADPH to RcFPR

The general decline of structure stability and the relaxation of the
isoalloxazine protein environment produced by the mutations in the C-
terminus had also important consequences on the enzymatic activity
of RcFPR (Table 2). All the RcFPR variants suffered a 2- to 4-fold decrease
of Km

NADPH compared to the WT protein, in agreement with their higher
affinities for NADP+. However, catalytic rates were more dependent on
the mutations. Substitution of Ala266 to Tyr led to a kcat 3-fold lower
than that of the native enzyme, while deletion of the C-terminal region
resulted in RcFPR variants which only maintained 5–10% of the original
activity. The HT from NADPH to WT RcFPRox was previously studied
under anaerobic conditions using stopped-flow techniques with photo-
diode array detection [33]. The process fitted to a two step model
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Table 2
Steady-state and pre-steady-state kinetic parameters for the reduction of the different
RcFPR variants by NADPH.

Steady-state Pre-steady-statec

kcat
(s−1) a

Km
NADPH

(μM) a
kcat
(s−1) b

Km
NADPH

(μM)b
Kd
NADPH

(μM−1)
kHT
(s−1)

WT 222 93 20 85 60.0 150.0
A266-Δ267–272 8 20 1 9 41.1 0.083
A266Y 68 32 7 43 25.0 126.6
A266Y-Δ267–272 12 43 39 31.7 0.058

a Data using K3Fe(CN)6 as substrate in 50 mM Tris–HCl, pH 7.2 and 25 °C.
b Data using DCPIP as substrate in 50 mM Tris–HCl pH, 7.2 and 25 °C.
c Data in 50 mM Tris–HCl, pH 8.0 and 25 °C.
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A → B → C that evidenced this reaction taking place through the
stabilisation of intermediate CTCs. Conversion of A into B was a very
fast step that included certain reduction of the protein and the formation
of an absorbance band centred at 560 nm that corresponds to a FAD:
NADPH CTC, CTC-1. Species B evolved to a broad band centred at
~850 nm related to a FADH−:NADP+ CTC, CTC-2, and reached an equi-
librium represented by species C. Upon HT from NADPH to the RcFPR
variants, none of them stabilised CTCs along the process, indicating
that the geometry for the isoalloxazine:nicotinamide interaction during
the HT process differs from that of WT (Fig. 4). All these HT processes
fitted to an A → B → C model, but the main HT process was included
in the first step and the second resulted in amuch slower process of con-
siderably less amplitude (Fig. 4). Spectral evolution of the deletion vari-
ants showed the appearance of a broad band extended towards 550 nm
that might be related to a different CTC organisation. All, theWT and the
mutated RcFPRs, showed a saturation profile dependence of the ob-
served rate for the main HT process on the NADPH concentration. Such
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Fig. 4. Spectral evolution of the RcFPR variants upon reduction by NADPH. Reduction with
0.0064 s, 0.01152 s, and 0.03968 s after mixing), and with 80 μM NADPH of (B) 8 μM
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cies after data fitting, and the second inset the absorbance evolution at 452 nm.
behaviour allowed calculation of kHT and Kd
NADPH (Table 2). The single

substitution of Ala266 with Tyr had a minor effect on kHT, but deletion
of the 267–272 tail practically block HT. Regarding affinity for the re-
duced formof the coenzyme, all the variants showed a justmild increase.

3.4. Crystal structures

Conditions tested allowed crystallisation of the A266Y-Δ267–272

RcFPR variant (see Mat & Met). Structure was solved by molecular re-
placement and refined up to 1.7 Å. The first 15 residues were not ob-
served in the electron density map. Two molecules with similar
conformation (r.m.s.d. of 0.67 Å for 251 Cα atoms) were present in
the asymmetric unit and show an overall folding equivalent to the WT
RcFPR (r.m.s.d. for 251 Cα atoms of 0.95 and 1.13 Å for molecules A
and B in the asymmetric unit, respectively). The main differences are
concentrated in the NADP+ domain, particularly in the Gly253–
Glu257 loop and in the Leu173–Lys186α helix, which appear displaced
with respect to their positions in WT RcFPR (Fig. 5A). The prosthetic
group is found in a bent conformation in both molecules A and B
(Fig. 5B and C), similar to the conformation adopted in the WT and in
other bacterial FPRs [16]. This is a remarkable finding because the
stabilisation of the FAD bent conformation present inWT RcFPRwas at-
tributed to the extra 6-residue C-terminus tail (267–272), which has
been removed in this mutant. In molecule A an extensive H-bond net-
work, extended from the O2′ (ribityl) to O2A (pyrophosphate) via two
water molecules (W25 and W217), seems to be the inducting force of
the FAD bent conformation (Fig. 6A). However, no water molecules
are present in this region of molecule B, and the FAD conformation is
stabilised by Tyr266, as explained below (Fig. 6B). Other specific inter-
actions between the apoprotein portion and FAD that are present in
the WT also exist in the mutant, as the non-polar interaction between
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Fig. 5.Crystal structure of A266Y-Δ267–272 RcFPRmutant. (A) Superposition ofWT RcFPR (green) (PDB code2BGJ) and A266Y-Δ267–272RcFPRmutant (moleculeA in orange andmolecule B
in blue). The N- and C-term regions inWT RcFPR are labelled. The C-term end in the A266Y-Δ267–272 RcFPRmutant is indicated by an arrow. The region Gly253 to Glu257 presenting some
backbone differences among structures is labelled. (B) Cartoon representation of the molecule A of A266Y-Δ267–272 RcFPR mutant. The FAD is shown as green sticks and Tyr266 as blue
sticks. (C) Cartoon representation of the molecule B of A266Y-Δ267–272 RcFPR mutant. The FAD is shown as green sticks and Tyr266 as red sticks. As observed in (B) and (C) the Tyr266
presents different conformation in the two molecules of the asymmetric unit of the A266Y-Δ267–272 RcFPR crystal.
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the adenosine and the hydrophobic Ile82 side-chain or the stacking be-
tween the isoalloxazine and Tyr66. Therefore, deletion of the 267–272
moiety does not significantly affect the conformation and stability of
the FAD.

However, comparison of the two molecules of the asymmetric
unit reveals remarkable differences in the allocation of the aromatic
ring of Tyr266. While in chain A (Fig. 6A) the side-chain of the
BA

Tyr66

W76

Thr130

Tyr266Ile82

O2’
W25

W217

O2A

FAD

Molecule A Molecu

FAD

Tyr66

Ile82

Fig. 6. The active site environment. Active sites of (A)Molecule A from A266Y-Δ267–272 RcFPR, (
cofactor is coloured in orange. Residues involved in FAD binding are represented as sticks an
molecules.
Tyr266 interacts with the isoalloxazine moiety of FAD (forming an
angle of ~11.2°), in chain B (Fig. 6B) the stacking interaction takes
place among the aromatic ring of the Tyr and the adenine group
(forming an angle of ~23.2°). In this last molecule, N10 of the isoal-
loxazine is 3.1 Å from the main-chain carbonyl oxygen of Tyr266, an
interaction that may help to stabilise the bent conformation of FAD
(Fig. 6B). In addition, in molecule A (Fig. 6A), the phenolic -OH
C

le B

Tyr266

Anabaena FNR 

FAD

Thr157

Tyr303

W403

B)Molecule B from A266-Δ267–272 RcFPR and (C) FNR from Anabaena (PDB 1que). The FAD
d by atom type (C, green; N, blue; O, red). The isolated green spheres represent water

image of Fig.�6
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group of Tyr266 is anchored though polar contacts with the -OH and
C_O groups of Thr130, as well as with W76 (d[O(Tyr266)-
OH(Thr130)] = 2.90 Å, d[O(Tyr266)-OH2(W76)] =2.68 Å). Inter-
estingly, similar interactions were observed in Anabaena FNR,
where the Tyr303 hydroxyl group interacts with the hydroxyl of
Thr157 and W403 located at the same position than Thr130 and
W76 in the RcFPR mutant (Fig. 6C).

4. Discussion

One of the most remarkable structural features of plastidic FNRs is
the conservation of a C-terminal Tyr that stabilises the re-face of the iso-
alloxazine through π–π stacking, occupying the putative nicotinamide
catalytic binding pocket in the free enzyme. Displacement of this resi-
due upon coenzyme binding modulates the entrance of the nicotin-
amide of NADP(H) into the active site to attain a catalytic competent
orientation while preventing formation of a strong stable ionic pair be-
tween both rings incompatible with an efficient turnover [21,34,49].
This Tyr additionally stabilises the flavin semiquinone and sets themid-
point potentials, therefore modulating the electron transfer rates to-
wards the protein partners [20,25]. In bacterial FPRs the position of
the plastidic C-terminal Tyr is replaced by a variable-length extension
displaying twomain features: i) one position ahead of the residue facing
isoalloxazine there is an aromatic residue (Phe267 in RcFPR) that stacks
the adeninemoiety of FADwhich stabilizes its folded conformation, and
ii) the residue facing the isoaloxazine, corresponding to the C-terminal
Tyr in plastidic FNRs can be either aliphatic or aromatic, branching out
the FPR group into subclass I (Ala266 in RcFPR) and II, respectively [2].
The resolved crystal structure of RcFPR suggested a particular impor-
tance for the C-terminal peptide starting at Ala266, AFVGEGI, in FAD
stabilisation. Phe267 stacks the adenine moiety of FAD, whereas
Val268, Gly271 and Ile272 establish a network of polar interactions
with the ribityl and the ribose [15]. The C-terminal extension of bacteri-
al FPRs is then proposed to displace allowing the nicotinamide to face
the isoalloxazine ring [33], as it happens with the C-terminal Tyr in
plastidic FNRs [7,15,21,33]. Rearrangement of residues located at the
re-face of FAD appears to be required for efficient turnover in FPRs,
while a restricted mobility of the C-terminal extension was envisaged
as responsible for lower catalytic efficiency [2]. Therefore, similar roles
to those of the C-terminal Tyr from plastidic FNRs might be expected
for Ala266 and the C-terminal extension in RcFPR inadjustment of sub-
strate binding and flavin redox properties.

Following these hypotheses, three variants of RcFPR have been pro-
duced here: the first one maintains the C-terminal extension, but
Ala266 was replaced by a Tyr (A266Y); in the second the 267–272 ex-
tension was deleted (A266-Δ267–272); and finally, the third mutant is a
combination of the previous two (A266Y-Δ267–272). Characterisation of
these variants shows that the influence of the C-terminal extension on
the catalytic event goes beyond previous considerations. Despite slight
differences in absorbance/fluorescence maxima positions when com-
pared to WT RcFPR suggesting slight changes in the isoalloxazine envi-
ronment, the three RcFPR variants bind FAD without affecting the
overall protein folding. Nevertheless, the absence of the C-terminal ex-
tension leads to amore solvent-exposed FAD (Fig. 2B and C), particular-
ly in the A266-Δ267–272 variant. When a Tyr occupies position 266,
extinction coefficients move to values similar to those of plastidic
FNRs, indicating similar electronic properties of FAD. Actually, crystals
obtained for the A266Y-Δ267–272 variant confirmed two configurations
for Tyr266, only one of them facing the flavin ring (Fig. 6A and B). The
stacked conformation of molecule A (Fig. 6A) might explain the de-
crease of intrinsic fluorescence regarding the A266-Δ267–272 variant
(Fig. 2B), while a likely oscillation of Tyr266 in solution between the
two positions illustrated in Fig. 6 would enable the high accessibility
measured through quenching by iodine. Moreover, this plausible
swing is consistent with the previously proposed movement of the
WT C-terminal tail during NADP+ entrance [33].
Binding of NADP+ toWT RcFPR is governed by the 2′P-AMP portion
[33]. The three structures available for the RcFPR:NADP+ complex show
binding of the nucleotide to the protein exclusively through its adeno-
sine moiety, mainly through contacts with Arg158, Arg195 and Arg203
without directly involving the 266–272 region. Surprisingly, all the
RcFPR variants described here, particularly the deletion mutants, bind
NADP+ stronger than the WT, revealing that the C-terminal extension
weakens coenzyme linkages after HT reaction. However, both variants
introducing a Tyr at position of Ala266 increase affinity but decrease
occupancy of the active site by nicotinamide (Table 1). In WT RcFPR
the C-terminal extension slightly narrows the preformed cavity to accom-
modate the 2′P-AMP portion of the coenzyme, where Arg158 H-bonds
Ile272. This interaction results shifted upon NADP+ binding, leading to
the displacement of the C-terminal extension. Therefore, its removal
might favour the initial binding of the 2′P-AMPmoiety, aswell as the sub-
sequent allocation of the NMNmoiety in the active site. However, differ-
ence spectra for the titration of A266-Δ267–272 with NADP+ indicate a
decreased nicotinamide occupancy in the active site as that for the WT,
that is reflected by a diminished Δε at 505 nm (Table 1). All these data
suggest a role for the C-terminal extension in alleviating the affinity for
the oxidised form of the coenzyme.

Removal of the C-terminal extension had an important negative ef-
fect on the activity of RcFPR. Despite affinity for the reduced form of
the coenzyme resulted slightly increased in the shortened variants, cal-
culated kcat and kHT values confirm that theHT fromNADPH to theflavin
is considerably hampered (Table 2). Additionally, HT processes occur
with appearance of an altered CTC that reflects differences in the geom-
etry of the FADox:NADPH HT complex. The fact that HT rates drop up to
2000-fold for these two variants, while steady-state rates just suffered
10–20 fold decreases, might be related to the low stability of the re-
duced form of the flavoenzyme in the absence of the C-terminal exten-
sion. Such problem can be overcomeduring steady-statemeasurements
by the presence of an acceptor that quickly recovers the oxidised
enzyme. The single residue replacement occurring in the A266Y variant
allows the formation of a complex compatible with HT, as shown by the
kHT and Kd

NADPH parameters being similar to the WT. Nevertheless, the
lack of detection of a CTC during its reduction by NADPH confirms that
the geometry of this HT complex is different than those of both the
WT RcFPR and the plastidic FNRs. Moreover, reduction of A266Y RcFPR
by NADPH only occurs to a very low extent, being the final spectralmix-
ture displaced towards the oxidised enzyme form (Fig. 4). This displace-
ment can be related to a non-optimal disposition of the reacting rings
that could influence the midpoint potential of the mutant to more neg-
ative values than in WT [15]. Despite the low stability of the reduced
mutants prevented determination of their midpoint reduction poten-
tials, these observations and the decrease of stabilised semiquinone in
the A266Y and A266-Δ267–272 variants during photoreduction suggest
that Ala266 and the C-terminus structure contribute to modulate the
oxido-reduction properties of RcFPR (Fig. 2D and E).

ITCmeasurements duringRcFPR:NADP+ complex formation also put
on evidence the coupling of a proton release during coenzyme binding
in the deletion mutants, revealing the presence of a proton acceptor to
counterbalance the process in WT RcFPR (Table 1). A conserved gluta-
mate in the active site of FNRs (Glu312 in maize) is thought to function
as proton donor/acceptor during catalysis, stabilising intermediate com-
plexes through pKa changes induced by binding of substrates [50]. This
position corresponds to Glu264 in RcFPR, recently proposed to undergo
a pKa decline after NADP+ binding and becoming a proton donor at
physiological pH [51]. The nH+ values presented in Table 1 are compat-
ible with Glu270 (-FVGEGI), a residue conserved in all sequences
analysed (Fig. 1), functioning as proton acceptor during coenzymebind-
ing, probably after the induced movement of the C-terminus [33].

Stability of a bent FAD conformation in bacterial FPRs was
thought to depend on the interactions between its adenosine moiety
and the C-terminal tail. However, removal of aminoacids beyond po-
sition 266 in RcFPR shortened variants eliminates those interactions
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leaving the flavin in a more exposed situation without promoting
significant changes in FAD conformation. In conclusion, our results
signalise as the most significant roles for the C-terminal extension
of bacterial FPRs: i) to expedite the entry and exit of the coenzyme
modulating the strength of molecular linkages, ii) to support an effi-
cient geometry of the RcFPR:NADP+ complex regulating flavin mid-
point potential for optimal HT, and, finally, iii) to supply a C-terminal
glutamate functioning as proton acceptor during catalysis of sub-
class I bacterial FPRs.
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