23 research outputs found

    Genetic association study of dyslexia and ADHD candidate genes in a Spanish cohort: Implications of comorbid samples

    Get PDF
    Published: October 31, 2018Dyslexia and attention deficit hyperactivity disorder (ADHD) are two complex neuro-behaviorally disorders that co-occur more often than expected, so that reading disability has been linked to inattention symptoms. We examined 4 SNPs located on genes previously associated to dyslexia (KIAA0319, DCDC2, DYX1C1 and FOXP2) and 3 SNPs within genes related to ADHD (COMT, MAOA and DBH) in a cohort of Spanish children (N = 2078) that met the criteria of having one, both or none of these disorders (dyslexia and ADHD). We used a case-control approach comparing different groups of samples based on each individual diagnosis. In addition, we also performed a quantitative trait analysis with psychometric measures on the general population (N = 3357). The results indicated that the significance values for some markers change depending on the phenotypic groups compared and/or when considering pair-wise marker interactions. Furthermore, our quantitative trait study showed significant genetic associations with specific cognitive processes. These outcomes advocate the importance of establishing rigorous and homogeneous criteria for the diagnosis of cognitive disorders, as well as the relevance of considering cognitive endophenotypes.The work of MSM and MC was supported by CONSOLIDER-Ingenio- 2010_COEDUCA (CSD2008-00048). AMA, LB and AG-L’s work was supported by the Basque Department of Industry, Tourism and Trade (Etortek Program), Innovation Technology Department of Bizkaia and CIBERehd Network. MC was also supported by grants (PSI2015-67353-R), and Ayuda Centro de Excelencia Severo Ochoa SEV-2015-0490 from the MINECO, and by grant (ERC-2011-ADG-295362) from the European Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Genetic Diversity of Toscana Virus

    Get PDF
    Distribution of Toscana virus (TOSV) is evolving with climate change, and pathogenicity may be higher in nonexposed populations outside areas of current prevalence (Mediterranean Basin). To characterize genetic diversity of TOSV, we determined the coding sequences of isolates from Spain and France. TOSV is more diverse than other well-studied phleboviruses (e.g.,Rift Valley fever virus)

    Stratification and therapeutic potential of PML in metastatic breast cancer.

    Get PDF
    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.The work of A.C. is supported by the Ramón y Cajal award, the Basque Department of Industry, Tourism and Trade (Etortek), Health (2012111086) and Education (PI2012-03), Marie Curie (277043), Movember Foundation (GAP1), ISCIII (PI10/01484, PI13/00031), FERO (VIII Fellowship) and ERC (336343). N.M.-M. and P.A. are supported by the Spanish Association Against Cancer (AECC), AECC JP Vizcaya and Guipuzcoa, respectively. J.U. and F.S. are Juan de la Cierva Researchers (MINECO). L.A., A.A.-A. and L.V.-J. are supported by the Basque Government of education. M.L.-M.C. acknowledges SAF2014-54658-R and Asociación Española contra el Cancer. R.B. acknowledges Spanish MINECO (BFU2014-52282-P, Consolider BFU2014-57703-REDC), the Departments of Education and Industry of the Basque Government (PI2012/42) and the Bizkaia County. M.S., V.S. and J.B. acknowledge Banco Bilbao Vizcaya Argentaria (BBVA) Foundation (Tumour Biomarker Research Program). M.S. and J.B. are supported by NIH grant P30 CA008748. M.dM.V. is supported by the Institute of Health Carlos III (PI11/02251, PI14/01328) and Basque Government, Health Department (2014111145). A.M. is supported by ISCIII (CP10/00539, PI13/02277) and Marie Curie CIG 2012/712404. V.S. is supported by the SCIII (PI13/01714, CP14/00228), the FERO Foundation and the Catalan Agency AGAUR (2014 SGR 1331). R.R.G. research support is provided by the Spanish Ministry of Science and Innovation grant SAF2013-46196, BBVA Foundation, the Generalitat de Catalunya (2014 SGR 535), Institució Catalana de Recerca i Estudis Avançats, the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds (SAF2013-46196).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1259

    Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis

    Get PDF
    Cholangiocarcinoma (CCA) comprises a group of heterogeneous biliary cancers with dismal prognosis. The etiologies of most CCAs are unknown, but primary sclerosing cholangitis (PSC) is a risk factor. Non-invasive diagnosis of CCA is challenging and accurate biomarkers are lacking. We aimed to characterize the transcriptomic profile of serum and urine extracellular vesicles (EVs) from patients with CCA, PSC, ulcerative colitis (UC), and healthy individuals. Serum and urine EVs were isolated by serial ultracentrifugations and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. EVs transcriptome was determined by Illumina gene expression array [messenger RNAs (mRNA) and non-coding RNAs (ncRNAs)]. Differential RNA profiles were found in serum and urine EVs from patients with CCA compared to control groups (disease and healthy), showing high diagnostic capacity. The comparison of the mRNA profiles of serum or urine EVs from patients with CCA with the transcriptome of tumor tissues from two cohorts of patients, CCA cells in vitro, and CCA cellsderived EVs, identified 105 and 39 commonly-altered transcripts, respectively. Gene ontology analysis indicated that most commonly-altered mRNAs participate in carcinogenic steps. Overall, patients with CCA present specific RNA profiles in EVs mirroring the tumor, and constituting novel promising liquid biopsy biomarkers

    Epigenetic loss of RNA‑methyltransferase NSUN5 in glioma targets ribosomes to drive stress adaptive translational program

    Get PDF
    Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease

    Phosphoinositide 3-Kinase-Regulated pericyte maturation governs vascular remodeling

    No full text
    © 2020 American Heart Association, Inc.Background: Pericytes regulate vessel stabilization and function, and their loss is associated with diseases such as diabetic retinopathy or cancer. Despite their physiological importance, pericyte function and molecular regulation during angiogenesis remain poorly understood. Methods: To decipher the transcriptomic programs of pericytes during angiogenesis, we crossed Pdgfrb(BAC)-CreERT2 mice into RiboTagflox/flox mice. Pericyte morphological changes were assessed in mural cell-specific R26-mTmG reporter mice, in which low doses of tamoxifen allowed labeling of single-cell pericytes at high resolution. To study the role of phosphoinositide 3-kinase (PI3K) signaling in pericyte biology during angiogenesis, we used genetic mouse models that allow selective inactivation of PI3Kα and PI3Kβ isoforms and their negative regulator phosphate and tensin homolog deleted on chromosome 10 (PTEN) in mural cells. Results: At the onset of angiogenesis, pericytes exhibit molecular traits of cell proliferation and activated PI3K signaling, whereas during vascular remodeling, pericytes upregulate genes involved in mature pericyte cell function, together with a remarkable decrease in PI3K signaling. Immature pericytes showed stellate shape and high proliferation, and mature pericytes were quiescent and elongated. Unexpectedly, we demonstrate that PI3Kβ, but not PI3Kα, regulates pericyte proliferation and maturation during vessel formation. Genetic PI3Kβ inactivation in pericytes triggered early pericyte maturation. Conversely, unleashing PI3K signaling by means of PTEN deletion delayed pericyte maturation. Pericyte maturation was necessary to undergo vessel remodeling during angiogenesis. Conclusions: Our results identify new molecular and morphological traits associated with pericyte maturation and uncover PI3Kβ activity as a checkpoint to ensure appropriate vessel formation. In turn, our results may open new therapeutic opportunities to regulate angiogenesis in pathological processes through the manipulation of pericyte PI3Kβ activity.Dr Graupera’s laboratory is supported by the research grants SAF2017-89116R-P from Ministerio de Ciencia (Spain) cofunded by European Regional Developmental Fund (ERDF), a Way to Build Europe; by the Catalan government through the project 2017-SGR; by La Caixa Foundation (HR18-00120); by la Asociación Española contra el Cancer (AECC)-Grupos Traslacionales (GCTRA18006CARR); by la Fundación BBVA (Beca Leonardo a Investigadores y Creadores Culturales 2017); and by the People Program (Marie Curie Actions; grant agreement 317250) of the European Union’s Seventh Framework Program FP7/2007 to 2013/, and the Marie Skłodowska-Curie (grant agreement 675392) of the European Union’s Horizon 2020 research. Dr Carracedo’s laboratory is supported by the Basque Department of Industry, Tourism and Trade (Elkartek) and the Department of Education (IKERTALDE IT1106-16), the Ministerio de Ciencia (SAF2016-79381-R [FEDER/EU], Severo Ochoa Excellence Accreditation SEV-2016-0644; Excellence Networks SAF2016-81975-REDT), European Training Networks Project (H2020-MSCA-ITN-308 2016 721532), the AECC (IDEAS175CARR, GCTRA18006CARR), La Caixa Foundation (HR17-00094), and the European Research Council (StG 336343, PoC 754627, CoG 819242). Centro de Investigación Biomédica en Red Cáncer (CIBERONC) was cofunded with FEDER funds and funded by Instituto de Salud Carlos III. Dr Aransay’s laboratory is supported by the Basque Department of Industry, Tourism and Trade (Elkartek) and the Severo Ochoa Excellence Accreditation SEV-2016-0644. Dr Franco was supported by European Research Council (StG 679368), the H2020-Twinning grant (692322), the Fundação para a Ciência e a Tecnologia funding (grants IF/00412/2012; EXPL-BEX-BCM-2258-2013; PRECISE-LISBOA-01-0145-FEDER-016394), and a grant from the Fondation Leducq (17CVD03). Personal support was from Marie-Curie ITN Actions (Dr Figueiredo and Kobialka), Juan de la Cierva (IJCI-2015-23455, Dr Villacampa), and CIBERONC (A. Martinez-Romero).info:eu-repo/semantics/publishedVersio

    Cross-sectional study of human coding- and non-coding RNAs in progressive stages of Helicobacter pylori infection

    Get PDF
    Helicobacter pylori infects 4.4 billion individuals worldwide and is considered the most important etiologic agent for peptic ulcers and gastric cancer. Individual response to H. pylori infection is complex and depends on complex interactions between host and environmental factors. The pathway towards gastric cancer is a sequence of events known as Correa's model of gastric carcinogenesis, a stepwise inflammatory process from normal mucosa to chronic-active gastritis, atrophy, metaplasia and gastric adenocarcinoma. This study examines gastric clinical specimens representing different steps of the Correa pathway with the aim of identifying the expression profiles of coding- and non-coding RNAs that may have a role in Correa's model of gastric carcinogenesis. We screened for differentially expressed genes in gastric biopsies by employing RNAseq, microarrays and qRT-PCR. Here we provide a detailed description of the experiments, methods and results generated. The datasets may help other scientists and clinicians to find new clues to the pathogenesis of H. pylori and the mechanisms of progression of the infection to more severe gastric diseases. Data is available via ArrayExpress. Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.1234933
    corecore