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relevance of mouse complex
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Experimental animal models are essential to obtain basic knowledge of the

underlying biological mechanisms in human diseases. Here, we review major

contributions to biomedical research and discoveries that were obtained in the

mouse model by using forward genetics approaches and that provided key insights

into the biology of human diseases and paved the way for the development of novel

therapeutic approaches.
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INTRODUCTION

Developing treatments aimed at the
causes of diseases such as cancer, infec-

tions and metabolic, autoimmune and psy-
chiatric disorders requires knowledge of the
underlying biological mechanisms. Such
knowledge can only be obtained by func-
tional studies in which the disease-relevant
tissue and the course of disease are manipula-
ted systematically, for example, pharmacolo-
gically, environmentally or genetically.
Experimental models are fundamental for
meeting these challenges, and biomedical
scientists often select mice as models.
That ‘mice are not humans’ is obvious and
some studies claim that the mouse is not a
good model for human diseases.1 The use
of experimental models in biomedical
research serves two important functions:
discovery of basic biological mechanisms
and development of new drugs and
treatments, both of which have been
successfully employed for the development
of novel clinical therapeutic concepts and
treatments. In this article, the members of

the SYSGENET network recount some
seminal studies on mouse models that
provided key insights into the biology of
human diseases and paved the way for
the development of novel therapeutic
approaches. SYSGENET represents a
network of European scientists who use
mouse genetic reference populations (GRPs)
to understand complex genetic factors
influencing disease phenotypes.2

MOUSE STUDIES HAVE CONTRIBUTED

TO MAJOR ADVANCEMENTS IN

CLINICAL MEDICINE

One of the most important advances in
immunology was the discovery of the major
histocompatibility antigens, which turned
out to be the key molecules in antigen
recognition and tissue rejection. This land-
mark discovery came from studying tissue
transplantations in different mouse strains
and performing appropriate genetic studies,
for which George Snell3 was awarded the
Nobel Prize in Physiology or Medicine in
1980. Four years later, research on mice was

awarded another Nobel Prize in Physiology
or Medicine: Köhler and Milstein4,5 were
given the prize for developing one of the
most innovative therapeutic approaches, the
generation of monoclonal antibodies.

THE VALUE OF FORWARD GENETICS

USING MOUSE MODELS

Forward genetic studies rely on natural
variations of the genomes to analyze complex
genetic traits. They are generally performed
on N2 backcross, F2 intercross mice or in
mouse GRPs. These approaches resemble
genome-wide association studies (GWAS) in
humans. They allow detection of genomic
regions (referred to as quantitative trait loci)
with multiple genes that exert quantitative
influences on the phenotype, an approach
referred to as complex genetic trait analysis.
The simplest GRP is a collection of inbred
mouse strains, each of which generated by
repeated brother–sister mating for at least
20 generations, rendering all members of a
strain genetically identical and homozygous
at all loci. In humans, such identity exists
only between monozygotic twins.

The most advanced GRPs are the BXD
recombinant inbred strains6,7 and the newly
generated Collaborative Cross population,8

which covers a genetic diversity twice as
large as that of the human population and
enables high resolution mapping.8–13

Furthermore, the frequency of functional
mutations can be increased by treating
inbred strains with mutagens such as
N-ethyl-N-nitrosourea.14–22 In this approach,
a single gene determines the phenotypic
alterations, which are generally referred to as
Mendelian traits.

A typical forward genetics approach starts
with the phenotyping of a GRP or a collec-
tion of mutagenized mice. Once a phenotypic
difference is found, breeding and genotyping
studies are performed to identify the genomic
region, and eventually the gene locus, respon-
sible for the phenotype. Below, we describe
several examples in which forward genetics
approaches led to important discoveries that
are highly relevant for understanding human
diseases.

Infection and immunity
The story started from a simple observation
in mice and ended with the award of the
Nobel Prize for Physiology or Medicine to
Bruce Beutler in 2011. Injection of bacterial
lipopolysaccharide (LPS) causes a lethal toxic
shock in most mouse strains. However,
C3H/HeJ mice are resistant to LPS.23 By
performing breeding experiments and
genetic mapping, they discovered that a
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defect in the Tlr4 gene causes the resistance
of C3H/HeJ mice to LPS.24 Tlr4 belongs to a
family of genes that are essential for the
detection of microbial pathogens and
initiation of immune responses. TLR4 also
has an essential role in sepsis, which causes
4200 000 deaths annually in the USA.25

Furthermore, Tlr4 knockout mice are
resistant to the development of neuropathic
pain.26 TLR genes also have roles in
autoimmune disorders, and they are
now used as therapeutic targets for the
development of drugs.27 The initial
discovery of TLRs as pathogen-sensing
molecules opened a new research avenue
that led to the discovery of pathways in
immune and non-immune cells that are
crucial for the host defense.28

Wild-derived mouse strains are highly
resistant to infection with West Nile virus,
but many laboratory inbred strains are sus-
ceptible. Genetic analysis has revealed that
the gene encoding the 20-50-oligoadenylate
synthetase 1b isoform (Oas1b) contributes to
this susceptibility.29,30 The role of Oas1b was
confirmed in laboratory mice by introducing
the wild-derived allele into inbred mouse
strains by generating knock-in and
transgenic mice.31,32 These studies paved the
way to the discovery of genetic variants of the
OAS1 gene in humans as a risk factor for
primary infections with West Nile virus.33,34

Metabolism
To identify non-invasive markers of non-
alcoholic fatty liver disease (NAFLD), Barr
et al35 performed a metabolomics study on
serum samples from a mouse model of
this complex disease. Their work identified
several disease markers, which were later also
found in a cohort of patients with NAFLD.
These markers have been developed as a
standardized clinical assay for diagnosis and
classification of NAFLD in humans.

The obese mutant mouse ob/ob arose spon-
taneously in The Jackson Laboratories, and
genetic studies identified a mutation in the
leptin (Lep) gene as the cause. Leptin is a satiety
factor, and its absence in ob/ob mice results in
uncontrolled eating.36 Subsequent studies on
humans also found an association between
mutations in LEP in a subset of morbidly
obese people, confirming leptin’s function in
the regulation of appetite in humans.37,38 Since
then, leptin has been demonstrated to have
other functions in humans, including regula-
tion of hematopoiesis, angiogenesis, wound
healing, and immune and inflammatory
responses.39 Leptin level or leptin res-
ponsiveness is altered in humans affected by
diabetes, renal failure, hypothyroidism and

AIDS. Thus, the identification of leptin and
its receptor (Lepr), which is mutated in the db/
db mouse, has opened a whole new research
field to understand the biology of obesity and
its risk for several severe disorders in humans,
including diabetes, cardiovascular diseases and
cancer.

Cardiovascular system
Koutnikova et al40 described the mapping of
quantitative trait loci (QTLs) for blood
pressure in the BXD recombinant inbred
mouse population and found a QTL on
chromosome 9. By using a combined
genetic analysis of candidate genes from this
QTL interval in mice and syntenic regions on
chromosome 3 in humans, they discovered
that a polymorphism in the UBP1 gene is
associated with hypertension in humans. The
gene product of UBP1 and the pathways in
which it is active could serve as targets for
treatment of hypertension in humans.

Atherosclerosis is a complex human dis-
ease involving both genetic and environmental
risk factors. Polymorphisms in genes direct-
ing lipid metabolism, inflammation and
thrombogenesis are thought to be responsible
for the wide range of susceptibilities in the
general population to myocardial infarction,
a fatal consequence of atherosclerosis.
Genetic linkage studies have been carried
out on humans and mouse models to iden-
tify genetic polymorphisms controlling
related phenotypic traits. Until now, B40
quantitative trait loci for atherosclerotic dis-
ease have been found in humans, and B30 in
mice.41 Follow-up studies identified genes
that are causally involved in the develop-
ment of atherosclerosis. For example, the
Tnfsf4 gene, encoding the OX40 ligand,
has been identified by positional cloning
as a gene that influences atherosclerosis
formation in mice. Subsequent analysis in a
human cohort identified a polymorphism in
the TNFSF4 gene associated with increased
risk of myocardial infarction.42

Circadian rhythms
The first known mammalian gene regulating
circadian behavior is Clock. It was discovered
in mice in an ENU mutation screen.43–45

These findings led to the discovery of a set
of core circadian clock genes (Bmal1, Npas2,
Per1,2, and Cry1,2), which function together
with Clock in a negative feedback loop.
They also paved the way to the concept
of central and peripheral clocks regulating
circadian biology. The discovery of Clock was
the basis for genetic association studies in
humans, which demonstrated an association
of CLOCK and other circadian genes with

sleep/wake cycles and disrupted circadian
rhythms in familial cases of advanced
sleep phase syndrome.46,47 More importantly,
the discovery of Clock and other circadian
genes provided the basis for the investi-
gation of circadian clock-controlled
mechanisms in diverse physiological and
pathological conditions in humans, such as
the regulation of blood pressure, cardio-
vascular functions, ischemia, diabetes,
metabolism syndrome and regulation of
endocrine and immune functions.48,49

Central nervous system
Poot et al50 studied the natural variation in
the volume of the corpus callosum in mice
from the BXD population. They found a
QTL on chromosome 7 that influences this
trait. Subsequently, they related the mouse
genes located in this QTL interval to
genetic data from patients with abnormal
corpus callosum (ACC) development. Their
analysis revealed that the HNRPU gene
(Hnrpul1 in mice) is strongly associated
with corpus callosum abnormalities in
humans. These results pinpointed a
common genetic basis for corpus callosum
development in the brain of mouse and man,
and provided a foundation for using mouse
models to elucidate the neurobiological
mechanisms underlying behavioral disorders
associated with abnormal development of the
corpus callosum.

Narcolepsy is a rare human sleep disorder
with a strong genetic component. However,
genetic studies in humans only found a
strong association with the human leukocyte
antigen (HLA) system. Forward genetic
studies in the dog and reverse genetics in
the mouse found that the orexin/hypocretin
system underlies this disease.51,52 Subsequent
studies on humans found that orexin-
expressing neurons are lost in narcolepsy
and are not detectable in cerebrospinal
fluid. Orexin level in cerebrospinal fluid is
now used to diagnose narcolepsy and to
study the etiology of the loss of specific
orexin neurons.53,54

Psychiatric abnormalities
Psychiatric disorders are very difficult to
study in humans as well as in experimental
animals due to the difficulty of defining
and assessing disease phenotype. However,
comparative genetics has contributed to
the discovery of translational genotype–
phenotype relationships in humans and mice
that are relevant for starting to understand
these complex brain disorders.55

De Mooij-van Malsen et al56 studied
chromosome substitution strains of mice
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(CSS)57 to dissect complex behaviors into
separate components. Subsequent genetic
mapping of these traits revealed a genetic
locus for avoidance behavior on mouse
chromosome 15 that is homologous to a
human linkage region for bipolar disorder.
By integrating the mouse QTL data
with genotypes from a large genome-wide
association data set for bipolar disorders,
they identified novel genes, such as
Adcy8, that provide new insights towards
understanding the neurobiological mecha-
nisms underlying this complex mood
disorder.56

Hovatta et al58 performed behavioral
analysis in different inbred mouse strains
and related them to gene expression profiles
in various brain regions. They identified 17
genes with expression patterns correlating
with anxiety-like phenotypes. Subsequently,
they tested 13 known human homologs as
candidate genes for human anxiety disorders
and showed that several of them are
associated with human anxiety disorders as
well.59

Malki et al60 treated mice from different
inbred strains with antidepressant drugs and
measured gene expression levels in the
hippocampus. Gene expression analysis of
strain-by-drug interactions revealed 17
differentially expressed genes. Subsequently,
they searched for SNPs in the corresponding
genes in a human cohort in which the
response to antidepressant drugs was
investigated. This comparison identified in
the human PPM1A gene polymorphisms that
are associated with differential responses to
nortriptyline, a norepinephrine reuptake
inhibitor.

REVERSE GENETICS AND THE MOUSE

MODEL

In addition to forward genetic approaches,
the mouse has been extensively used as a
model for reverse genetics, that is, manipu-
lating a gene and then determining the
biological consequences. For the latter, the
establishment of targeted mutagenesis in ES
cells has made it possible to generate knock-
out (KO) mice in which a specific gene is
deleted. The main advantage of KO models is
studying the function of a single gene by
comparing KO mice to wild-type mice, on a
defined genetic background. KO models have
contributed enormously to our understand-
ing of gene functions.61,62 Generation of
a mouse KO for every mouse gene in
combination with systematic phenotyping
of these mutant lines by the International
Mouse Phenotyping Consortium (IMPC)

will be extremely important for future
forward genetic approaches.63

Complex genetics studies in mice and
genome-wide association studies in humans
identify QTL regions in which the causative
gene(s) can be identified. Subsequently, the
combination of extensive knowledge of many
genes and the availability of the KO models
is extremely important to find the best
candidates and to demonstrate causality.
One example is the confirmation of the
consequences of the Tlr4 mutation for LPS
resistance.26

KO mice are generated on a single genetic
background. However, the phenotypic man-
ifestation of a gene KO might differ between
genetic backgrounds due to differences in
modifier genes. Such variations have been
observed in diabetic mice with mutations in
the db or ob gene.64 Similarly, the severity of
the diabetes caused by disruption of the Wfs1
gene depends on the mouse genetic
background.65 Further, the clock mutation
was found in a ENU screen in a B6
background, but was lost when transferred
onto a C3H background. A subsequent QTL
study identified a modifier gene that is part
of the melatonin synthesis pathway.66 Thus,
forward and reverse genetic approaches
are not mutually exclusive but highly
complementary.

‘THE HUMAN IS THE BEST MODEL FOR

HUMAN DISEASES’

One criticism leveled against the use of
mouse models for human diseases is that
they do not reflect the full complexity
observed in humans.67 We very much
disagree with this view, because it does not
appreciate the reasoning behind using
models, which is to reduce the complexity
of a system and not to reproduce it. Only
then is it possible to study the effect of
individual causal components. In humans,
diseases are in most cases multifactorial. Both
genetic and environmental factors influence
the outcome, so it is often very difficult to
identify the genetic influences because they
are masked by too many confounding
factors. Experimental models are extremely
useful because they ‘simplify’ the study by
keeping most of the environmental factors
constant (no differences in medication,
diets, socioeconomic factors, stress at work,
pollution, etc).

It is also important to reflect on the term
‘model’ in biomedical research. In basic
research, the main purpose is to discover
and understand biological mechanisms. In
this case, it is not necessary that a model

reflects perfectly a human disease state. One
should not always expect that a mutation in
an orthologous gene in the mouse results in
the same phenotype observed in humans.
But even in these cases, one will obtain
important insights into its biological func-
tions. On the other hand, the expectations
are different in drug research and develop-
ment. In this case, a model should approx-
imate as much as possible the human
phenotype in order to reliably predict the
outcome of clinical treatment. Here, many
sophisticated disease models based on
advances in mouse genetics have been deve-
loped. They include mouse lines with multi-
ple gene knockouts and transgenic lines
carrying human disease-associated alleles.
An analysis of the 100 best-selling drugs
showed that phenotypes of knockout
mice correlate well with drug efficacy,
and thus were crucial for target discovery
and validation.68,69 In addition, B40% of
animal studies could be reproduced in
human trials. For those that failed, one of
the reasons may have been inappropriate
clinical trial design.70,71 It should also be
noted that using a single mouse strain and
a single tissue for analysis may not be
appropriate to draw general conclusions
about the usefulness of the mouse model.1

Thus, ‘we should foster the possibilities of
each model, not malign them’.72

Another argument against the validity
of the mouse as a model system is that
GWAS studies in humans make mouse
genetics obsolete.73 This may be true in some
cases, but not in general. For obvious
ethical reasons, experiments on humans
are not possible for phenotypes such as
susceptibility to infections, toxic substances,
allergens or stress. Further, the regions
identified in GWAS studies contain many
genes and without prior knowledge of gene
functions in the mammalian organism
(described in experimental models) it will
be impossible to find the causal gene
variants. Once an association between
genetic variations and disease states has
been identified in human studies, it will
be necessary to prove causal relationship.
This is only possible in an animal
model. Furthermore, environmental and
other confounding factors are numerous
and difficult to control in human studies.
To address them, cohorts will have to be
stratified into increasingly smaller groups,
reducing the groups to sizes that do not
allow any more significant associations.
Last but not the least, studies in mouse
models cost only a fraction of the cost of
large-scale genetic studies in humans.
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CONCLUSIONS

Granting agencies and policy makers as well
as clinical researchers and practitioners
should all realize that mouse models are
essential to advance our understanding of
human biology and, in this way, obtain a
better knowledge of human disease patho-
mechanisms and how to best treat them. Yet,
we do recognize the limitations of mouse
models and that one-to-one translation to
humans in clinical trials is not the norm.
Thus, joint translational research involving
clinicians and basic researchers using mouse
models will always be vital for the success of
clinical research.

Furthermore, one should not be short-
sighted and dictate research approaches solely
by current clinical needs. Even experts in
their fields were way off the mark when
predicting the future potential of their devel-
opments. Gottlieb Daimler presumed that
‘There will be a maximum of 5000 auto-
mobiles being built, because there are not
enough chauffeurs to drive them.’ IBM chief
Thomas Watson estimated in 1943 ‘a world-
wide need of about five computers’, and
in 1981, Bill Gates thought that ‘640 K are
enough for everybody’.74 Thus, looking back,
it is very clear that without broad basic
research approaches, and the use of mouse
model systems, in particular, many modern
clinical treatments and therapies would
simply not exist. Therefore, only continuous
efforts to understand mammalian biology
in experimental animal models will allow
biomedical research to make major
discoveries that will considerably advance
the development of novel strategies to
diagnose and treat human diseases.
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