15 research outputs found

    Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginacaeae) in Portugal

    Get PDF
    BACKGROUND: The genus Limonium Miller comprises annual and perennial halophytes that can produce sexual and/or asexual seeds (apomixis). Genetic and epigenetic (DNA methylation) variation patterns were investigated in populations of three phenotypically similar putative sexual diploid species (L. nydeggeri, L. ovalifolium, L. lanceolatum), one sexual tetraploid species (L. vulgare) and two apomict tetraploid species thought to be related (L. dodartii, L. multiflorum). The extent of morphological differentiation between these species was assessed using ten diagnostic morphometric characters. RESULTS: A discriminant analysis using the morphometric variables reliably assigns individuals into their respective species groups. We found that only modest genetic and epigenetic differentiation was revealed between species by Methylation Sensitive Amplification Polymorphism (MSAP). However, whilst there was little separation possible between ploidy levels on the basis of genetic profiles, there was clear and pronounced interploidy discrimination on the basis of epigenetic profiles. Here we investigate the relative contribution of genetic and epigenetic factors in explaining the complex phenotypic variability seen in problematic taxonomic groups such as Limonium that operate both apomixis and sexual modes of reproduction. CONCLUSIONS: Our results suggest that epigenetic variation might be one of the drivers of the phenotypic divergence between diploid and tetraploid taxa and discuss that intergenome silencing offers a plausible mechanistic explanation for the observed phenotypic divergence between these microspecies. These results also suggest that epigenetic profiling offer an additional tool to infer ploidy level in stored specimens and that stable epigenetic change may play an important role in apomict evolution and species recognition

    Ovule transcriptome analysis discloses deregulation of genes and pathways in sexual and apomictic Limonium species (Plumbaginaceae)

    Get PDF
    The genus Limonium Mill. (sea lavenders) includes species with sexual and apomixis reproductive strategies, although the genes involved in these processes are unknown. To explore the mechanisms beyond these reproduction modes, transcriptome profiling of sexual, male sterile, and facultative apomictic species was carried out using ovules from different developmental stages. In total, 15,166 unigenes were found to be differentially expressed with apomictic vs. sexual reproduc- tion, of which 4275 were uniquely annotated using an Arabidopsis thaliana database, with different regulations according to each stage and/or species compared. Gene ontology (GO) enrichment analy- sis indicated that genes related to tubulin, actin, the ubiquitin degradation process, reactive oxygen species scavenging, hormone signaling such as the ethylene signaling pathway and gibberellic acid- dependent signal, and transcription factors were found among differentially expressed genes (DEGs) between apomictic and sexual plants. We found that 24% of uniquely annotated DEGs were likely to be implicated in flower development, male sterility, pollen formation, pollen-stigma interactions, and pollen tube formation. The present study identifies candidate genes that are highly associated with distinct reproductive modes and sheds light on the molecular mechanisms of apomixis expression in Limonium spinfo:eu-repo/semantics/publishedVersio

    Phylogeography and modes of reproduction in diploid and tetraploid halophytes of Limonium species (Plumbaginaceae): evidence for a pattern of geographical parthenogenesis

    Get PDF
    Background and Aims The genus Limonium (Plumbaginaceae) has long been recognized to have sexual and apomictic (asexual seed formation) modes of reproduction. This study aimed to elucidate phylogeographical patterns and modes of reproduction in diploid and tetraploid Limonium species, namely three putative sexual diploid species with morphological affinities (L. nydeggeri, L. ovalifolium, L. lanceolatum) and three related, probably apomict tetraploid species (L. binervosum, L. dodartii, L. multiflorum). Methods cpDNA diversity and differentiation between natural populations of the species were investigated using two chloroplast sequence regions (trnL intron and trnL–trnF intergenic spacer). Floral heteromorphies, ovule cytoembryological analyses and pollination and crossing tests were performed in representative species of each ploidy group, namely diploid L. ovalifolium and tetraploid L. multiflorum, using plants from greenhouse collections. Key Results and Conclusions Genetic analyses showed that diploid species have a higher haplotype diversity and a higher number of unique (endemic) haplotypes than tetraploid species. Network analysis revealed correlations between cpDNA haplotype distribution and ploidy groups, species groups and geographical origin, and haplotype sharing within and among species with distinct ploidy levels. Reproductive biology analyses showed that diploid L. ovalifolium mainly forms meiotically reduced tetrasporic embryo sacs of Gagea ova, Adoxa and Drusa types. Limonium multiflorum, however, has only unreduced, diplosporic (apomictic) embryo sacs of Rudbeckia type, and autonomous apomictic development seems to occur. Taken together, the findings provide evidence of a pattern of ‘geographical parthenogenesis’ in which quaternary climatic oscillations appear to be involved in the geographical patterns of coastal diploid and tetraploid Limonium speciesinfo:eu-repo/semantics/publishedVersio

    Interplay of ribosomal DNA Loci in nucleolar dominance: dominant NORs are up-regulated by chromatin dynamics in the wheat-rye system

    Get PDF
    Background: Chromatin organizational and topological plasticity, and its functions in gene expression regulation, have been strongly revealed by the analysis of nucleolar dominance in hybrids and polyploids where one parental set of ribosomal RNA (rDNA) genes that are clustered in nucleolar organizing regions (NORs), is rendered silent by epigenetic pathways and heterochromatization. However, information on the behaviour of dominant NORs is very sparse and needed for an integrative knowledge of differential gene transcription levels and chromatin specific domain interactions. Methodology/Principal Findings: Using molecular and cytological approaches in a wheat-rye addition line (wheat genome plus the rye nucleolar chromosome pair 1R), we investigated transcriptional activity and chromatin topology of the wheat dominant NORs in a nucleolar dominance situation. Herein we report dominant NORs up-regulation in the addition line through quantitative real-time PCR and silver-staining technique. Accompanying this modification in wheat rDNA trascription level, we also disclose that perinucleolar knobs of ribosomal chromatin are almost transcriptionally silent due to the residual detection of BrUTP incorporation in these domains, contrary to the marked labelling of intranucleolar condensed rDNA. Further, by comparative confocal analysis of nuclei probed to wheat and rye NORs, we found that in the wheat-rye addition line there is a significant decrease in the number of wheat-origin perinucleolar rDNA knobs, corresponding to a diminution of the rDNA heterochromatic fraction of the dominant (wheat) NORs. Conclusions/Significance: We demonstrate that inter-specific interactions leading to wheat-origin NOR dominance results not only on the silencing of rye origin NOR loci, but dominant NORs are alsomodified in their transcriptional activity and interphase organization. The results show a cross-talk between wheat and rye NORs, mediated by ribosomal chromatin dynamics, revealing a conceptual shift from differential amphiplasty to ‘mutual amphiplasty’ in the nucleolar dominance process.This work was supported by the Fundação para a Ciência e Tecnologia (projects POCI/BIA-BDE/57575/2004 to M.S. and POCI/BIA-BCM/59389/2004 to N.N.

    Growth performance, in vitro antioxidant properties and chemical composition of the halophyte Limonium algarvense Erben are strongly influenced by the irrigation salinity

    Get PDF
    Limonium algarvense Erben (sea lavender) is a halophyte species with potential to provide natural ingredients with in vitro antioxidant, anti-inflammatory, neuroprotective and antidiabetic properties. This study reports for the first time the 1) cultivation of sea lavender in greenhouse conditions under irrigation with freshwater (approx. 0 mM NaCl) and saline aquaculture wastewater (300 and 600 mM NaCl), and 2) the influence of the irrigation salinity on the plant performance (e.g growth, number of produced leaves and flowers), in vitro antioxidant properties [radical scavenging activity (DPPH and ABTS), ferric reducing antioxidant power (FRAP), metal chelating properties on copper (CCA) and iron (ICA)], toxicity (in vitro on three mammalian cell lines) and chemical composition (determined by LC-ESI-HRMS/MS). The freshwater-irrigated plants had better growth performance than those irrigated with saltwater. Extracts from wild plants, had the highest antioxidant activity, but those from cultivated ones kept high in vitro antioxidant properties and interesting chemical profile. The flowers' extracts of plants irrigated with 300 mM NaCl had the highest antioxidant activities against DPPH, whereas those from freshwater-irrigated plants were more active on ABTS, CCA and FRAP. Most of the extracts showed nil toxicity. The flowers' extracts displayed the highest diversity of compounds, mainly quercetin, apigenin, luteolin, naringenin and their glycoside derivatives. Moreover, their abundance varied with the irrigation salinity. These data indicate that sea lavender plants can be successfully cultivated in greenhouse conditions under fresh- and saltwater irrigation, maintaining interesting biological and chemical properties.Funding Agency Portuguese Foundation for Science and Technology Portuguese National Budget CCMAR/Multi/04326/2019 GreenVet project ALG-01-0145-FEDER-028876 XtrerneAquaCrops FA-05-2017-028 Lisboa-01-0145-FEDER-022125-RNEM-IST ID/QUI/00100/201 Portuguese Foundation for Science and Technology SFRH/BD/116604/2016 CEECIND/00425/2017info:eu-repo/semantics/publishedVersio

    Habitat specificity of a threatened and endemic cliff-dwelling halophyte

    Get PDF
    Research ArticleCoastal areas and other saline environments are major contributors to regional and global biodiversity patterns. In these environments, rapidly changing gradients require highly specialized plants like halophytes. In European coastal cliff-tops, rocky and sandy seashores, and saltmarshes, typical halophytes from the genus Limonium are commonly found. Among them, the aneuploid tetraploid (2n ¼ 4x ¼ 35, 36, 37) Limonium multiflorum, endemic to the west coast of Portugal, is an interesting case study for investigating the ecology and conservation of a halophyte agamospermic species. Although it is listed in the IUCN red list of threatened species, information on its population size or rarity, as well as its ecology, in some respects is still unknown. Field surveys in the largest known population were performed (Raso cape, Portugal) in order to determine habitat requirements and conservation status. A total of 88 quadrats were monitored, 43 of which contained at least one L. multiflorum individual. For each sampled quadrat, four abiotic and four biotic variables as well as two spatially derived variables were recorded. Principal component analysis and cluster analysis showed narrow habitat specificity for this species which appeared to be intolerant to competition with invasive alien plants. We conclude that in situ conservation in a local ‘hotspot’ of this rare and vulnerable species emerges as a priority in order to ensure that biodiversity is not los

    Secretory structures in plants: lessons from the Plumbaginaceae on their origin, evolution and roles in stress tolerance

    Get PDF
    Special IssueThe Plumbaginaceae (non-core Caryophyllales) is a family well known for species adapted to a wide range of arid and saline habitats. Of its salt-tolerant species, at least 45 are in the genus Limonium; two in each of Aegialitis, Limoniastrum and Myriolimon, and one each in Psylliostachys, Armeria, Ceratostigma, Goniolimon and Plumbago. All the halophytic members of the family have salt glands, which are also common in the closely related Tamaricaceae and Frankeniaceae. The halophytic species of the three families can secrete a range of ions (Na+, K+, Ca2+, Mg2+, Cl−, HCO3 −, SO4 2-) and other elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Salt glands are, however, absent in salt-tolerant members of the sister family Polygonaceae. We describe the structure of the salt glands in the three families and consider whether glands might have arisen as a means to avoid the toxicity of Na+ and/or Cl− or to regulate Ca2+ concentrations within the leaves. We conclude that the establishment of lineages with salt glands took place after the split between the Polygonaceae and its sister group the Plumbaginaceaeinfo:eu-repo/semantics/publishedVersio

    Germination and sustainable cultivation of succulent halophytes using resources from a degraded estuarine area through soil technologies approaches and saline irrigation water

    No full text
    The degradation of estuarine areas has been a growing concern in recent years, as these ecosystems offer several services. The Arthrocnemum and Suaeda genera produce useful compounds with various applications, which have led to their overexploitation in their native habitats. The main goal of this study is to use green technologies for sustainable cultivation of two species bioindicators of Mediterranean saltmarshes, Arthrocnemum macrostachyum and Suaeda vera, as an alternative to their overutilization. A tailored soil (TAIL) was constructed with a Saline Fluvisol (FLU), from a marginal estuarine area, and organic/inorganic residues were used as amendments, for plant cultivation. Seeds collected in natural populations were pretreated with two dormancy-breaking treatments (H2SO4, H2O2) and germinated in FLU or TAIL. A microcosm assay using FLU or TAIL irrigated with estuarine water (VF) or three aqueous saline solutions (0, 200, or 400 mmol/L NaCl) was established. The species obtained a low percentage of seeds' germination being the highest values under substrate control (water-soaked filter paper). The A. macrostachyum reached the highest germination percentage when seeds were pretreated with H2SO4 (20%) while the germination of S. vera was favored by the pretreatment with H2O2 (49%). Both species had the highest growth in TAIL irrigated with 0 or VF, presenting the largest stems (13–32 cm), the largest primary branches (3.5–7.2 cm), and the highest production of aerial part biomass (28–36 g). This study contributes to the sustainable cultivation of these valuable halophytes and could play an important role in the sustainable management of marginal estuarine land.info:eu-repo/semantics/publishedVersio

    Harnessing sediments of coastal aquaculture ponds through technosols construction for halophyte cultivation using saline water irrigation

    No full text
    The Mediterranean aquaculture has been developed mostly in brackish environment in inactive coastal salt production areas. This study aims to utilise Technosols made with aquaculture sediments for Limonium algarvense Erben cultivation. This species that has nutraceutical potential thrives in halophilic environments in the southwest of the Iberian Peninsula and in Morocco. A microcosm assay was set up with plants grown in bottom sediments (C+), commercial substrate (C-), and Technosols with amendments mixture application at 180 g/kg (Tec180) or at 360 g/kg (Tec360). These plants were irrigated with saline (assay 1) and/or with deionised water (assay 2). The bottom pond sediments, coffee wastes and the estuarine water were evaluated for diverse physicochemical parameters. Plant growth was characterised through a combined methodology using morphometric, SEM and physiological analysis. The Technosols were constructed with bottom sediments and a mixture of organic wastes used as amendments. Results revealed that the bottom sediments had low pH 3.2, Corg and extractable P and K contents, and high electroconductivity (EC) and N-NH4 concentration. The estuarine water had a neutral pH, high EC and high Cl-, HCO3-, Na+, Mg2+ and Ca2+ but low N-NO3- content. The Technosols showed a significant increase of pH, Corg, K and P and a decrease in N-NH4 and EC in comparison with sediments. Principal component analysis separated the different experiments in three groups: C-, A1 and A2 assays. The C- was highly correlated with Corg, P, K, N-NO3 parameters and total ascorbate. The A1 assay showed a strong association with Na, Ca and EC parameters, whereas the A2 assay presented a strongly correlation with plant growth. Plants from Technosols had greater development when irrigated with deionised water than under salty irrigation as opposed to plants cultivated in unamend sediments. In conclusion, these results support that highly saline sediments could be valorised through Technosols construction to cultivate plants with saline water, with potential application in the agro-food and pharmaceutical industry.info:eu-repo/semantics/publishedVersio
    corecore