165 research outputs found
Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors
Interleukin-7 (IL-7) promotes survival and expansion of lymphoid precursors. We show here that, in addition, IL-7 has a fundamental role, as early as the stage of the multipotent (B/T/NK) common lymphoid progenitor (CLP), in maintaining the B cell differentiation program open. CLPs generated in the absence of IL-7 have normal T/NK differentiation potential, but severely impaired B potential. Accordingly, CLPs from IL-7–deficient mice express lower amounts of early B cell factor (EBF) and Pax5 than wild-type CLPs, but similar amounts of GATA-3. Importantly, induced overexpression of EBF is sufficient to restore the B potential in these cells. These results indicate that IL-7 directs commitment of CLPs by modulating EBF expression. This is the first example of a cytokine influencing lymphoid lineage commitment in multipotent progenitors and highlights the relevance of the expression of a functional IL-7 receptor at the CLP stage
Arrested B Lymphopoiesis and Persistence of Activated B Cells in Adult Interleukin 7
This deposit is composed by a publication in which the IGC' authors have had the role of collaboration (it's a collaboration publication). This type of deposit in ARCA is in restrictedAccess (it can't be in open access to the public), and could only be accessed by two ways: either by requesting a legal copy to the author (the email contact present in this deposit) or by visiting the following link:
https://f1000.com/prime/1003667Interleukin 7 is a crucial factor for the development of murine T and B lymphocytes. We now
report that, in the absence of interleukin 7, B lymphocyte production takes place exclusively
during fetal and perinatal life, ceasing after 7 wk of age. In peripheral organs, however, the pool
of B lymphocytes is stable throughout adult life and consists only of cells that belong to the B1
and marginal zone (MZ) compartments. This is accompanied by a 50-fold increase in the frequency
of immunoglobulin (Ig)M- and IgG-secreting cells, and the concentration of serum
immunoglobulins is increased three- to fivefold. Both the MZ phenotype and the increase in
serum IgM are T cell independent. These findings reveal a previously undescribed pathway of
B lymphopoiesis that is active in early life and is interleukin 7 independent. This pathway generates
B1 cells and a normal sized MZ B lymphocyte compartment
Arrested B Lymphopoiesis and Persistence of Activated B Cells in Adult Interleukin 7−/− Mice
Interleukin 7 is a crucial factor for the development of murine T and B lymphocytes. We now report that, in the absence of interleukin 7, B lymphocyte production takes place exclusively during fetal and perinatal life, ceasing after 7 wk of age. In peripheral organs, however, the pool of B lymphocytes is stable throughout adult life and consists only of cells that belong to the B1 and marginal zone (MZ) compartments. This is accompanied by a 50-fold increase in the frequency of immunoglobulin (Ig)M- and IgG-secreting cells, and the concentration of serum immunoglobulins is increased three- to fivefold. Both the MZ phenotype and the increase in serum IgM are T cell independent. These findings reveal a previously undescribed pathway of B lymphopoiesis that is active in early life and is interleukin 7 independent. This pathway generates B1 cells and a normal sized MZ B lymphocyte compartment
Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells
The growth and repair of skeletal muscle after birth depends on satellite cells that are characterized by the expression of Pax7. We show that Pax3, the paralogue of Pax7, is also present in both quiescent and activated satellite cells in many skeletal muscles. Dominant-negative forms of both Pax3 and -7 repress MyoD, but do not interfere with the expression of the other myogenic determination factor, Myf5, which, together with Pax3/7, regulates the myogenic differentiation of these cells. In Pax7 mutants, satellite cells are progressively lost in both Pax3-expressing and -nonexpressing muscles. We show that this is caused by satellite cell death, with effects on the cell cycle. Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7. These findings underline the importance of cell survival in controlling the stem cell populations of adult tissues and demonstrate a role for upstream factors in this context
The cyclin D1 carboxyl regulatory domain controls the division and differentiation of hematopoietic cells
International audienceAbstractBackgroundThe family of D cyclins has a fundamental role in cell cycle progression, but its members (D1, D2, D3) are believed to have redundant functions. However, there is some evidence that contradicts the notion of mutual redundancy and therefore this concept is still a matter of debate.ResultsOur data show that the cyclin D1 is indispensable for normal hematopoiesis. Indeed, in the absence of D1, either in genetic deficient mice, or after acute ablation by RNA interference, cyclins D2 and D3 are also not expressed preventing hematopoietic cell division and differentiation at its earliest stage. This role does not depend on the cyclin box, but on the carboxyl regulatory domain of D1 coded by exons 4–5, since hematopoietic differentiation is also blocked by the conditional ablation of this region.ConclusionThese results demonstrate that not all functions of individual D cyclins are redundant and highlight a master role of cyclin D1 in hematopoiesis
Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits
Human AKTIP and mouse Ft1 are orthologous ubiquitin E2 variant proteins involved in telomere maintenance and DNA replication. AKTIP also interacts with A- and B-type lamins. These features suggest that Ft1 may be implicated in aging regulatory pathways. Here, we show that cells derived from hypomorph Ft1 mutant (Ft1kof/kof ) mice exhibit telomeric defects and that Ft1kof/kof animals develop progeroid traits, including impaired growth, skeletal and skin defects, abnormal heart tissue, and sterility. We also demonstrate a genetic interaction between Ft1 and p53. The analysis of mice carrying mutations in both Ft1 and p53 (Ft1kof/kof ; p53ko/ko and Ft1kof/kof ; p53+/ko ) showed that reduction in p53 rescues the progeroid traits of Ft1 mutants, suggesting that they are at least in part caused by a p53-dependent DNA damage response. Conversely, Ft1 reduction alters lymphomagenesis in p53 mutant mice. These results identify Ft1 as a new player in the aging process and open the way to the analysis of its interactions with other progeria genes using the mouse model
CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation
CX3CR1 expression is associated with the commitment of CSF-1R+ myeloid precursors to the macrophage/dendritic cell (DC) lineage. However, the relationship of the CSF-1R+ CX3CR1+ macrophage/DC precursor (MDP) with other DC precursors and the role of CX3CR1 in macrophage and DC development remain unclear. We show that MDPs give rise to conventional DCs (cDCs), plasmacytoid DCs (PDCs), and monocytes, including Gr1+ inflammatory monocytes that differentiate into TipDCs during infection. CX3CR1 deficiency selectively impairs the recruitment of blood Gr1+ monocytes in the spleen after transfer and during acute Listeria monocytogenes infection but does not affect the development of monocytes, cDCs, and PDCs
Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses
SummarySystems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes
- …