390 research outputs found
EUVE Observations of the Magnetic Cataclysmic Variable QQ Vulpeculae
We present simultaneous X-ray (lambda_peak ~ 44A) and EUV (lambda_peak = 89A)
light curves for the magnetic cataclysmic variable QQ Vulpeculae, obtained with
the EUVE satellite. We find that the unique shape of the X-ray light curve is
different from previously obtained X-ray light curves of QQ Vul and provides
evidence for two-pole accretion. Detailed examination of the photometric data
indicates that QQ Vul undergoes a stellar eclipse of the X-ray emitting region,
indicative of a high binary inclination. We discuss possible implications for
the nature of this system given the observed shape of its EUV and X-ray light
curves.Comment: 12 pages including 4 figures, accepted to PAS
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
Cranberry Polyphenols in Esophageal Cancer Inhibition: New Insights
Esophageal adenocarcinoma (EAC) is a cancer characterized by rapidly rising incidence and poor survival, resulting in the need for new prevention and treatment options. We utilized two cranberry polyphenol extracts, one proanthocyanidin enriched (C-PAC) and a combination of anthocyanins, flavonoids, and glycosides (AFG) to assess inhibitory mechanisms utilizing premalignant Barrett’s esophagus (BE) and EAC derived cell lines. We employed reverse phase protein arrays (RPPA) and Western blots to examine cancer-associated pathways and specific signaling cascades modulated by C-PAC or AFG. Viability results show that C-PAC is more potent than AFG at inducing cell death in BE and EAC cell lines. Based on the RPPA results, C-PAC significantly modulated 37 and 69 proteins in JH-EsoAd1 (JHAD1) and OE19 EAC cells, respectively. AFG treatment significantly altered 49 proteins in both JHAD1 and OE19 cells. Bioinformatic analysis of RPPA results revealed many previously unidentified pathways as modulated by cranberry polyphenols including NOTCH signaling, immune response, and epithelial to mesenchymal transition. Collectively, these results provide new insight regarding mechanisms by which cranberry polyphenols exert cancer inhibitory effects targeting EAC, with implications for potential use of cranberry constituents as cancer preventive agents
Trauma ICU Prevalence Project: the diversity of surgical critical care.
Background:Surgical critical care is crucial to the care of trauma and surgical patients. This study was designed to provide a contemporary assessment of patient types, injuries, and conditions in intensive care units (ICU) caring for trauma patients. Methods:This was a multicenter prevalence study of the American Association for the Surgery of Trauma; data were collected on all patients present in participating centers' trauma ICU (TICU) on November 2, 2017 and April 10, 2018. Results:Forty-nine centers submitted data on 1416 patients. Median age was 58 years (IQR 41-70). Patient types included trauma (n=665, 46.9%), non-trauma surgical (n=536, 37.8%), medical (n=204, 14.4% overall), or unspecified (n=11). Surgical intensivists managed 73.1% of patients. Of ICU-specific diagnoses, 57% were pulmonary related. Multiple high-intensity diagnoses were represented (septic shock, 10.2%; multiple organ failure, 5.58%; adult respiratory distress syndrome, 4.38%). Hemorrhagic shock was seen in 11.6% of trauma patients and 6.55% of all patients. The most common traumatic injuries were rib fractures (41.6%), brain (38.8%), hemothorax/pneumothorax (30.8%), and facial fractures (23.7%). Forty-four percent were on mechanical ventilation, and 17.6% had a tracheostomy. One-third (33%) had an infection, and over half (54.3%) were on antibiotics. Operations were performed in 70.2%, with 23.7% having abdominal surgery. At 30 days, 5.4% were still in the ICU. Median ICU length of stay was 9 days (IQR 4-20). 30-day mortality was 11.2%. Conclusions:Patient acuity in TICUs in the USA is very high, as is the breadth of pathology and the interventions provided. Non-trauma patients constitute a significant proportion of TICU care. Further assessment of the global predictors of outcome is needed to inform the education, research, clinical practice, and staffing of surgical critical care providers. Level of evidence:IV, prospective observational study
Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: a multicentric randomized double blind study
International audienc
Prebiotic proanthocyanidins inhibit bile reflux–induced esophageal adenocarcinoma through reshaping the gut microbiome and esophageal metabolome
The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammation-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett’s esophagus, and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome–esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague-Dawley rats, with or without reflux induction, received water or C-PAC ad libitum (700 μg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/TP53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Streptococcus parasanguinis, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory, and immune-implicated proteins and genes, including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1b, Lbp, Lcn2, Myd88, Nfkb1, Tlr2, and Tlr4, aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe, promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation, and cellular damage
A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci
Allergic disease is very common and carries substantial public-health burdens. We conducted a meta-analysis of genome-wide associations with self-reported cat, dust-mite and pollen allergies in 53,862 individuals. We used generalized estimating equations to model shared and allergy-specific genetic effects. We identified 16 shared susceptibility loci with association P < 5 × 10-8, including 8 loci previously associated with asthma, as well as 4p14 near TLR1, TLR6 and TLR10 (rs2101521, P = 5.3 × 10 -21); 6p21.33 near HLA-C and MICA (rs9266772, P = 3.2 × 10 -12); 5p13.1 near PTGER4 (rs7720838, P = 8.2 × 10 -11); 2q33.1 in PLCL1 (rs10497813, P = 6.1 × 10-10), 3q28 in LPP (rs9860547, P = 1.2 × 10-9); 20q13.2 in NFATC2 (rs6021270, P = 6.9 × 10-9), 4q27 in ADAD1 (rs17388568, P = 3.9 × 10-8); and 14q21.1 near FOXA1 and TTC6 (rs1998359, P = 4.8 × 10-8). We identified one locus with substantial evidence of differences in effects across allergies at 6p21.32 in the class II human leukocyte antigen (HLA) region (rs17533090, P = 1.7 × 10-12), which was strongly associated with cat allergy. Our study sheds new light on the shared etiology of immune and autoimmune disease
Calorie restriction activates new adult born olfactory‐bulb neurones in a ghrelin‐dependent manner but acyl‐ghrelin does not enhance subventricular zone neurogenesis
The ageing and degenerating brain show deficits in neural stem/progenitor cell (NSPC) plasticity that are accompanied by impairments in olfactory discrimination. Emerging evidence suggests that the gut hormone ghrelin plays an important role in protecting neurones, promoting synaptic plasticity and increasing hippocampal neurogenesis in the adult brain. In the present study, we investigated the role of ghrelin with respect to modulating adult subventricular zone (SVZ) NSPCs that give rise to new olfactory bulb (OB) neurones. We characterised the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHSR), using an immunohistochemical approach in GHSR‐eGFP reporter mice to show that GHSR is expressed in several regions, including the OB but not in the SVZ of the lateral ventricle. These data suggest that acyl‐ghrelin does not mediate a direct effect on NSPC in the SVZ. Consistent with these findings, treatment with acyl‐ghrelin or genetic silencing of GHSR did not alter NSPC proliferation within the SVZ. Similarly, using a bromodeoxyuridine pulse‐chase approach, we show that peripheral treatment of adult rats with acyl‐ghrelin did not increase the number of new adult‐born neurones in the granule cell layer of the OB. These data demonstrate that acyl‐ghrelin does not increase adult OB neurogenesis. Finally, we investigated whether elevating ghrelin indirectly, via calorie restriction (CR), regulated the activity of new adult‐born cells in the OB. Overnight CR induced c‐Fos expression in new adult‐born OB cells but not in developmentally born cells, whereas neuronal activity was absent following re‐feeding. These effects were not present in ghrelin−/− mice, suggesting that adult‐born cells are uniquely sensitive to changes in ghrelin mediated by fasting and re‐feeding. In summary, ghrelin does not promote neurogenesis in the SVZ and OB; however, new adult‐born OB cells are activated by CR in a ghrelin‐dependent manner
ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions
The recently completed HIV prevention trials network study 052 is a landmark collaboration demonstrating that HIV transmission in discordant couples can be dramatically reduced by treating the infected individual with antiretroviral therapy (ART). However, the cellular and virological events that occur in the female reproductive tract (FRT) during ART that result in such a drastic decrease in transmission were not studied and remain unknown. Here, we implemented an in vivo model of ART in BM/liver/thymus (BLT) humanized mice in order to better understand the ability of ART to prevent secondary HIV transmission. We demonstrated that the entire FRT of BLT mice is reconstituted with human CD4+ cells that are shed into cervicovaginal secretions (CVS). A high percentage of the CD4+ T cells in the FRT and CVS expressed CCR5 and therefore are potential HIV target cells. Infection with HIV increased the numbers of CD4+ and CD8+ T cells in CVS of BLT mice. Furthermore, HIV was present in CVS during infection. Finally, we evaluated the effect of ART on HIV levels in the FRT and CVS and demonstrated that ART can efficiently suppress cell-free HIV-RNA in CVS, despite residual levels of HIV-RNA+ cells in both the FRT and CVS
Systems Analysis of miRNA Biomarkers to Inform Drug Safety
microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems
- …
