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Abstract
microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and 
released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. 
Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced 
tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced tox-
icity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. 
However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions 
before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for 
the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in 
the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. 
Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulat-
ing miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, 
easy to use, point-of-care test systems.
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The problem of adverse drug reactions 
(ADRs) and limitations of current clinical 
toxicity markers

Adverse drug reactions (ADRs) represent a huge health-
care and societal burden, accounting for roughly 6.5% and 
6.7% of hospitalizations in the US and UK, respectively 
(Lazarou et  al. 1998; Pirmohamed et  al. 2004). When 
considering pharmaceutical safety of a drug, toxicity and 
clinical pharmacology are both assessed, as is its potential 
impact on multiple organ systems. Clinical diagnosis of 
an ADR is challenging due to variable presentations, and 
biomarkers play an important role in aiding diagnosis by 
helping determine organ specificity whilst informing on 

duration of the toxic event and its severity. Biomarkers 
are also essential during pre-clinical development, in both 
in vivo and in vitro systems, helping to demonstrate moni-
torability and allowing confidence of clinical monitoring 
to ensure patient safety.

Drug-related toxicity can be highly variable, with dif-
ferent injured organs leading to different pathological 
phenotypes. Drug-induced cardiotoxicity is difficult to 
diagnose and predict (Marrone et al. 2015), with mani-
festations including hypertension and arrhythmia that can 
lead to heart failure. Non-invasive diagnostics including 
echocardiography (ECHO) and MUGA (multiple-gated 
acquisition scans) (Simoni and Brandão 2017) aid detec-
tion of chemotherapy-induced cardiotoxicity via iden-
tification of damage-associated reductions in left heart 
ventricle function (Zuppinger et al. 2007), but application 
is limited by issues including intra- and inter-variability 
(Cardinale and Sandri 2015). Blood based biomarkers 
such as expression of brain natriuretic peptide (BNP) and 
cardiac troponins (cTns) have shown promise for early 
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diagnosis (O’Brien 2008; Ferri et al. 2013; Lenihan et al. 
2016; Shah et al. 2017). Troponins are especially promis-
ing, with elevations linked to left ventricular dysfunction 
(Cardinale and Scherrer-Crosbie 2017), however potential 
issues regarding translation into humans (O’Brien 2008; 
Tonomura et al. 2012) and non-specific expression may 
mean they are insufficient for clinical use (Nishimura et al. 
2015; Defilippi and Seliger 2018).

Similarly, clinical markers currently used to diagnose 
drug-induced kidney injury such as blood urea nitrogen 
(BUN), glomerular filtration and creatinine based meas-
urements are poorly sensitive and lack specificity as they 
can be modulated by external factors including age and 
diet (Waikar et al. 2012; Lopez-Giacoman 2015; Pavko-
vic et al. 2016). Early diagnostics are essential in provid-
ing effective treatment, such as for acute kidney injury 
(AKI) (Pavkovic and Vaidya 2016). Novel biomarkers 
β2-microglobulin (B2M), clusterin and kidney injury mol-
ecule-1 (KIM-1) have shown promise by outperforming 
BUN as a biomarker in relevant in vivo models (Kohl et al. 
2020; Vlasakova et al. 2020). Furthermore, urine based 
novel markers α-glutathione-S-transferase, albumin and 
cystatin C may offer prognosis on change of function or 
damage to glomerulus or proximal tubular nephron seg-
ments (Kim and Moon 2012; Charlton et al. 2014). How-
ever variability, as with cystatin C in relation to age and 
inflammation, may again limit application of these novel 
markers (Séronie-Vivien et al. 2008; Charlton et al. 2014). 
The need for rapid diagnosis following AKI has led to sug-
gestions that KIM-1 and neutrophil gelatinase-associated 
lipocalin (NAGL) could act as more specific and sensitive 
indicators of injury (De Geus et al. 2011; Lim et al. 2013). 
KIM-1 is stable in urine and has been shown to relate 
to severity of damage (Huo et al. 2010; Liu et al. 2016), 
indicating better sensitivity compared to serum creatinine 
(Tekce et al. 2015; Griffin et al. 2019). Similarly, urinary 
NAGL has shown potential in diagnosis and prognosis 
of post-surgery AKI patients (Cho et al. 2014). Despite 
promise, a lack of specificity for AKI means KIM-1 and 
NAGL may be better suited to a biomarker panel (Medić 
et al. 2016), reflected by their inclusion in an FDA quali-
fied panel of six urine creatinine-normalized biomarkers 
also containing clusterin and cystain C to monitor kidney 
toxicity during early phase clinical trials (Sandelius et al. 
2020).

Diagnosis of drug-induced liver injury, which currently 
relies on general liver injury indicators, represents a major 
clinical challenge. Detection of intracellular hepatocyte 
enzymes alanine aminotransferase (ALT) and aspartate ami-
notransferase (AST) in serum can indicate release following 
necrosis related to hepatocellular injury. Increase of total 
bilirubin (TBL) and measurement of alkaline phosphatase 
(ALP) further help to determine overall liver function and 

cholestatic liver injury, respectively. Diagnosis of DILI 
incorporates measurements of these enzymes based on Hy’s 
Law, where if ALT is ≥ 3 × the upper limit of normal (ULN) 
and TBL is ≥ 2 × ULN and there is no other likely cause of 
enzyme elevations such as viral hepatitis then DILI can be 
assumed (Hornby et al. 2014; Kullak-Ublick et al. 2017). 
This diagnosis of exclusion is generally considered insuf-
ficient in a clinical setting but is necessary here as enzymes 
can also be elevated following liver damage that is non-drug 
induced (Teschke and Danan 2016).

In addition to this limited diagnosis of exclusion, sev-
eral issues with the enzymatic biomarkers used means 
clinical DILI assessment can be difficult. A lack of speci-
ficity is a major issue. Whilst ALT isoform 1 (ALT1) 
is relatively liver-specific, ALT2 is present in skeletal 
muscle, as is AST which is also seen in the kidney and 
heart, whilst ALP is present in bone. As a result ami-
notransferases can rise following skeletal muscle injury 
(Nathwani et al. 2005; Pettersson et al. 2008), and iso-
form specific assays to mitigate this issue are not routine 
in most clinical laboratories (Church and Watkins 2019). 
This lack of enzyme specificity is coupled with poor injury 
sensitivity. Transient aminotransferase increases can occur 
with drugs that are not hepatotoxic, which can often delay 
approval of safe drugs (Church and Watkins 2019). Fur-
thermore, baseline variations in serum concentration have 
been indicated in twin studies under control of genetic 
and environmental factors (Bathum et al. 2001; Rahmioglu 
et al. 2009). Overall current DILI biomarkers do not cor-
relate well with histopathological staging of injury, lack 
prognostic capability and struggle to distinguish between 
liver toxicity mechanisms (Shi et al. 2010).

Despite the limitations of currently used clinical DILI 
biomarkers, several novel biomarkers have begun to be 
validated in research including cytokeratin-18 (CK18), 
glutamate dehydrogenase (GLDH), osteopontin (OPN), 
macrophage colony stimulating factor receptor (MCSFR) 
and miR-122 (Church and Watkins 2019). Whilst some 
possess favourable characteristics versus current markers, 
they provide little insight into mechanisms of liver injury, 
although miR panels have shown promise in distinguish-
ing between drug-induced and non-drug-induced pheno-
types of liver injury (Yamaura et al. 2012; Krauskopf et al. 
2017).

The associated limitations of biomarkers for detecting 
drug-induced injury in the organs described above mean 
biomarker improvements are desired, as are biomarkers for 
neurotoxicity, dermatological toxicity and activation of the 
immune system. Marrone and colleagues (2015) reviewed 
comprehensively the role of miRs in toxicity across many 
organ systems and how toxicity can alter miRs in these 
organs (Marrone et al. 2015). Therefore, here we will focus 
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on the challenges in miR analysis and the application of 
miRs in a drug-safety setting.

The potential of miRNAs in safety 
assessment

The biogenesis and function of miRs

Mature microRNAs (miRs) are non-coding RNAs about 
22 nucleotides long that take part in the RNA interference 
pathway, a mechanism that post-transcriptionally reduces 
gene expression. The biogenesis of miRs is seen in Fig. 1. 
miRs target mRNA by imperfectly base-paring to partially 
complementary 3’-UTR regions and promoting a reduction 
in their translation (Guo et al. 2010). This can be followed by 
mRNA deadenylation and de-capping, causing more rapid 
degradation of the target mRNA (Wu et al. 2006). The bio-
genesis and processing of miRs is tightly regulated, with 
miRs present in all metazoa and many sequences highly evo-
lutionarily conserved (Lee et al. 2007). Almost all human 
mRNAs can be targeted by miRs—an example of this 
was seen in an evaluation of human Amyotrophic Lateral 

Sclerosis (ALS) gene regulatory pathways, where database 
analysis showed 99.15% of pathways had some form of miR-
mediated regulation (Hamzeiy et al. 2018). miRs are among 
the fastest produced and longest-lived RNA species present 
in cells (Reichholf et al. 2019), and better understanding of 
miR function has indicated that miRs play a very important 
role in determining cell fate (Wilczynska and Bushell 2015). 
There is a strong bank of literature detailing the huge poten-
tial of miRs as biomarkers of toxic events. Here this review 
will detail the potential advantages of miRs as biomarkers, 
current evidence on their biomarker use, and the challenges 
that must be overcome prior to their introduction into drug-
safety assessment.

Potential advantages of miRs as biomarkers

There are several features of miRs which suggest potential 
for their use as biomarkers. One possible advantage of miRs 
over current biomarker options is cell specificity of certain 
miRs. Several miRs are only transcribed in one cell type, 
with database tools available to assess this specificity. One 
such tool is the RATEmiR database, an atlas cataloguing 
miR expression in major rat organs, which can compare 

Fig. 1   Basal miR biogenesis and secretion into the bloodstream. 
Long pri-miRNAs are initially transcribed from miRNA genes or 
can be co-transcribed with protein coding genes (Saçar Demirci et al. 
2019) within the nucleus and translocated to the cytoplasm as imma-
ture pre-miRNAs by Exportin 5, where Dicer processes them into 
mature miRNAs (miRs) which can target mRNA for degradation or 

protein translation inhibition. Mature miRNAs can be associated with 
exosomes or coupled with Ago2 protein and released into the blood. 
Alternatively, they can be enveloped within microvesicles or attached 
to high density lipoproteins (HDL) and later released into the extra-
cellular environment (Sohel 2016)
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tissue-enrichment and -specificity, as well as organ speci-
ficity. Here users can assess results from three bioinformat-
ics pipelines, both alone and in combination (Bushel et al. 
2018). miR specificity has been investigated in vivo, with 
identification of pancreas specific miRs in rat and canine 
models (Smith et al. 2016) and lung specific miRs in non-
human primates (Yang et al. 2020). High conservation of 
miRs means results from in vivo studies are extremely rel-
evant (Schraml et al. 2017), with translatable models like the 
beagle dog useful in helping to identify organ toxicity during 
early drug development (Koenig et al. 2016).

Another potentially beneficial aspect of miRs as biomark-
ers is that they can show a comparatively early response to 
toxicant exposure, even in events which are nontoxic, mean-
ing miR alterations may occur under external stimuli prior 
to other more wholesale changes. These subtle exposure-
related cellular events mean miRs may be useful in risk 
assessment (Marrone et al. 2014). Changes in miRs are 
apparent with cellular responses to stress (i.e. apoptosis/
necrosis), following toxicity or with infection (Olejniczak 
et al. 2018). Both acute and chronic environmental exposure 
has led to miR alterations, showing them to be sensitive indi-
cators of change (Vrijens et al. 2015). Alterations of miRs 
in such instances mean they are suitable candidates to act as 
markers of drug-induced tissue damage.

miRs can be released into the extracellular milieu through 
several mechanisms as shown in Fig. 1, and the nature of this 
release allows their detection in biofluids. Cellular miRs can 
be released passively due to apoptosis or necrosis, and later 
release can occur as miRs are trapped in apoptotic bodies 
(Howell et al. 2018). miRs released packaged in exosomes 
and associated/entrapped with vesicles or proteins have a 
degree of protection from extracellular RNases (Valadi et al. 
2007; Harrill et al. 2016). As miRs are small in size they 
are often detected in blood as part of such complexes, with 
aforementioned protection thanks to macromolecules such 
as Ago2 protein (Arroyo et al. 2011) and high density lipo-
protein (HDL) (Vickers et al. 2011). By forming such com-
plexes miRs are fairly stable in biofluids such as whole blood 
and urine when properly stored, thus facilitating measure-
ment from human plasma and serum (Mitchell et al. 2008; 
Mall et al. 2013). Complex formation such as with Ago2 
may also have long-term storage benefits, as shown by cir-
culating miRs being resistant against repetitive freeze–thaw 
cycle mediated degradation (Osaki et al. 2014), whilst miRs 
in formalin-fixed paraffin-embedded tissue are of suitable 
stability for analysis of archival material (Liu and Xu 2011; 
Boisen et al. 2015). Similarly, RT-qPCR analysis of serum 
miRs has shown no significant differences in results follow-
ing miR exposure to pH extremes (Chen et al. 2008). This 
robust nature of miRs in biofluids is a key aspect in being 
suitable as a non-invasive biomarker.

Although general stability of miRs in biofluids support 
their use as biomarkers, it is important to note this is not 
a universal guarantee and there have been observations of 
free circulating miRs having differential stability between 
release states and between miRs themselves. As shown in 
Fig. 1 there are several potential states in which miRs can 
be released from the cell, this formation is important for 
miR stability as vesicle associated miRs have superior stabil-
ity compared to non-vesicle associated miRs. Once present 
in serum miR species can also differ in stability, as during 
one 5-h incubation of the sera for example, where miR-122 
was shown to degrade significantly whereas miR-16 did not 
(Köberle et al. 2013). Therefore, more detailed understand-
ing of the stability of certain miRs in circulation may be 
necessary to maximize biomarker potential.

Sensitivity and specificity relating to drug-induced injury 
may be perhaps the biggest advantages of miRs as proposed 
biomarkers, as evident with studies involving miR-122 
(Robles-Díaz et al. 2016), which has displayed superior 
biomarker performance in both aspects following human 
acetaminophen (APAP) toxicity compared to traditional 
enzymatic biomarkers. miR-122 has shown consistently to 
increase before ALT in serum (Thulin et al. 2014) and has 
been detected while liver enzymes were in normal range 
(Dear et al. 2014), whilst showing better sensitivity over 
aminotransferases in predicting APAP toxicity in patients 
presenting early to hospital (Vliegenthart et al. 2015). miR-
122 has also shown high liver specificity, as highlighted in 
a study comparing miRs as potential liver and skeletal mus-
cle drug-induced injury markers. Here, miR novel toxicity 
markers outperformed and added to sensitivity and specific-
ity in detecting organ injury when compared to ALT in both 
cases, AST for liver and creatine kinase (CK) for skeletal 
muscle. This highlighted the capability of miR-122 to suc-
cessfully diagnose DILI (Bailey et al. 2019).

The biological half-life of miRs is also a characteristic 
that may enhance its biomarker potential. Half-life of miR-
122 in blood is estimated to be less than both ALT and AST, 
returning to baseline after 3–7 days, which may be indicative 
of progression and resolution of liver injury (Starkey Lewis 
et al. 2011). The nature and significance of miR half-life 
requires more research, such as by Matthews et al. (2020). 
Here, under inhibition of further hepatocyte miR production 
miR-122 was shown to have a shorter half-life than ALT 
despite a large endogenous release (Matthews et al. 2020).

History of miRs as biomarkers of toxicity

The biochemical properties of miRs confer a strong advan-
tage supporting their potential use as biomarkers. This is fur-
ther supported by a number of relevant studies showing that 
miR detection can act as an appropriate marker for toxicity. 
Wang et al. first showed in 2009 that plasma and liver tissue 
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of mice with acetaminophen-induced liver injury showed 
significant differences of miR-122 and -192 compared to 
control animals. These changes reflected histopathology and 
were detectable prior to ALT (Wang et al. 2009). Findings 
by Laterza et al. (2009) further highlighted the biomarker 
potential of miR-122. In rats treated with a muscle-specific 
toxicant aminotransferases increased, in contrast miR-122 
showed no increase to this toxicant but did show a 6000-
fold increase in plasma following treatment with hepato-
toxicant trichlorobromomethane (Laterza et al. 2009). This 
pattern was later translated into humans, where a cohort of 
fifty-three APAP overdose patients had circulating miR-
122 levels 100 times above that of controls (Starkey Lewis 
et al. 2011). miR-122 is the most abundant adult hepatic 
miR, accounting for approximately 70% of the total liver 
miRNAome (Bandiera et al. 2015; Howell et al. 2018), and 
has therefore become the best characterized potential miR 
liver biomarker, with a large research interest on its use as 
a circulating biomarker in response to drug-related hepato-
toxicity (Zhang et al. 2010). Whilst there has been a strong 
focus on miR-122 as a marker of hepatotoxicity, research 
has also investigated miRs as toxicity biomarkers in other 
organs, with interest in circulating miRs as markers of toxic-
ity from industry and amongst regulators. Several companies 
are currently at various stages of developing miR diagnostic 
panels, including for liver toxicity, brain disease and heart 
failure, with some currently available miR diagnostic panels 
including a panel for thyroid cancer (Bonneau et al. 2019).

miRs beyond the liver

miRs have been researched as biomarkers of tissue dam-
age for organs including the heart, brain, muscle and kid-
neys (Ji et al. 2009; Laterza et al. 2009; Vacchi-Suzzi et al. 
2012; Akat et al. 2014). For cardiotoxicity miRs -1, -133, 
-34a and -208 have all been detected in serum following 
chronic administration of doxorubicin in mice and rats (Ji 
et al. 2009; Vacchi-Suzzi et al. 2012; Nishimura et al. 2015; 
Piegari et al. 2016). In terms of renal toxicity, miRs -21 and 
-155 can distinguish AKI patients when measured in urine, 
and have been shown as upregulated in the kidney follow-
ing gentamicin exposure (Saikumar et al. 2012). Similarly, 
a panel of twenty-five miRs were decreased in the kidney 
and increased in the urine of rats treated with cisplatin 
(Kanki et al. 2014). Dysregulation in serum of CNS and 
hippocampus enriched miRs -9 and -384 following exposure 
to neurotoxin trimethyltin could suggest potential as bio-
markers of CNS toxicity (Ogata et al. 2015), whilst signifi-
cantly higher exosomal levels of miR-124 in acute ischaemic 
stroke patients means miR-124 could be a useful diagnos-
tic and prognostic tool for ischaemic injury (Ji et al. 2016). 
Translatable plasma biomarkers of drug-induced pancreatic 
injury have been found in rat models, with miR-217-5p in 

particular showing high specificity and sensitivity, outper-
forming classical markers amylase and lipase (Erdos et al. 
2020). Whilst single miR biomarker species are of signifi-
cant interest, miR profiling studies have observed patterns of 
miR expression in a range of tissues, leading to research into 
measurement of miR panels as markers of injury (Ludwig 
et al. 2016).

There has been some criticism towards the characteri-
zation of widely-expressed abundant miRs as potential 
biomarkers, such as miR-21. miR-21 has been suggested 
as a marker for various diseases including coronary artery 
disease and hepatitis C, but it has been argued that a lack 
of specificity to any one disease means it cannot be con-
sidered a viable biomarker (Jenike and Halushka 2021). 
Whilst association with different disease states may limit 
application as a sole biomarker, assessment of miR expres-
sion in different tissues and even different cells remains 
useful to understand what variations in the circulation 
mean in the context of a disease. The changes of circulat-
ing miRs, even if not solely specific to a distinct disease 
state, can still help inform on indications and mechanisms 
of injury and damage and retain diagnostic potential per-
haps in contributing to a detailed biomarker panel, which 
may have greater ability to differentiate between diseases.

As well as circulating miRs as markers for organ toxic-
ity, some intracellular miRs are also being investigated as 
potential indicators of certain forms of intracellular per-
turbation, for instance potentially as biomarkers of mito-
chondrial toxicity (Baumgart et al. 2016).

Several examples of biofluid-detectable miRs whose 
levels are altered by chemical toxicants in different organ 
systems are given in Table 1.

A summary of the putative main advantages and dis-
advantages of the use of miRs in general as biomarkers is 
shown in Table 2.

Mechanistic and prognostic capability of miRs

miR-122 has some promising prognostic qualities in that 
it correlates more closely to histological grading of injury 
than ALT and seems to be predictive of whether a patient 
will recover or require transplant following injury (Ruoquan 
et al. 2014; Wang et al. 2016; Murray et al. 2017). How-
ever, rise of miR-122 with hepatitis C infection may affect 
this prognostic use, as it may reflect liver injury independ-
ent of aetiology. This issue may be solved by use of panels 
of multiple miRs, with miR panel profiles having poten-
tial to reflect the type of liver injury, such as differentiating 
between acute or chronic and hepatocellular or cholestatic 
phenotypes (Yamaura et al. 2012).

Glaab et al. (2018) demonstrated liver-specific (-122, 
-192) and muscle-specific (-1, -133a/b, -206) miRs outper-
formed, in terms of sensitivity and specificity, ALT and AST 
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in monitoring the liver and AST and CK for monitoring skel-
etal muscle for drug-induced injury. The biomarkers were 
also able to sensitively monitor bile duct injury (necrosis 
and hyperplasia) seen with ANIT, methapyrilene and phal-
loidin. It was concluded that assessing a panel of miRs was 
an efficient and cost-effective investigative option (Glaab 
et al. 2018, unpublished data).

Measuring serum biomarkers to inform mechanistically 
about pathological states in organs is known as the concept 
of “liquid biopsy” (Lambrecht et al. 2018). In the case of 
DILI, Russo et al. (2017) showed miR changes were detected 
in the sera of acute DILI patients. Out of 3391 miRs and pre-
miRNAs tested, eleven were significantly different between 
acute DILI patients and normal controls. miR-122 was the 
only miR deemed to have significant prognostic value, with 
the combination of miR-122 and albumin accurately iden-
tifying subjects who died within 6 months of DILI (Russo 
et al. 2017).

Another potential refinement for diagnosis of liver inju-
ries when measuring miRs in the blood is their different 
fractionations under different aetiologies. miR-122 has been 
found to be predominantly in the exosome-rich fraction in 
alcoholic liver disease but mostly present in the protein-rich 
fraction during DILI (Bala et al. 2012). Another factor to 
help more detailed diagnosis could be analysis of struc-
tural miR variants known as isomiRs (isoforms of miRNA), 
as relative isomiR expression could further distinguish 
between disease states with several pathologies (Krauskopf 
et al. 2017). This has been evident in DILI where multiple 
miR-122 isomiRs were detected in patient serum but were 
at low concentration or not present in healthy counterparts. 
Importantly, PCR is shown to be inaccurate when analys-
ing isomiRs, so alternative quantification such as dynamic 
chemical labelling (DCL) may be necessary (López-Lon-
garela et al. 2020).

With regards to cardiotoxicity, miR-146a has shown dose-
dependent upregulation in rats following exposure to chemo-
therapeutic doxorubicin, with overexpression of miR-146a 
in rat cardiac myocytes associated with reduced survival the 
cells (Horie et al. 2010). miRs have potential to distinguish 
between disease states within the heart, with dysregulation 
seen in acute myocardial infarction (Dimmeler and Zeiher 
2010; Devaux et al. 2012), arrhythmia (Harling et al. 2017) 
and heart failure (HF), where reductions in circulating lev-
els of let-7i, miRs -18a/b, -223, -301a, -652 and -423 have 
been associated with an increased risk of 180-day mortal-
ity (Ovchinnikova et al. 2016). Reduced levels of miR-145 
have also been associated with the severity of coronary 
artery disease (Gao et al. 2015). This evidence indicates the 
prognostic potential of miRs in assessment of cardiotoxicity 
manifestations.

In terms of kidney injury, whilst KIM-1 is a promising 
urinary AKI biomarker (Shao et al. 2014; Pavkovic et al. 
2016), it does not provide much insight into AKI mechanis-
tically. Pavkovic et al. (2016) used target prediction to see 
targets of miRs associated with pathways perturbed across 
kidney pathologies. KIM-1 along with miRs -21, -200c, -423 
were examined as candidate biomarkers of drug-induced 
AKI. The top pathway and associated pathological condi-
tion were found to be MYC-mediated apoptosis signalling 
and cell death and renal necrosis/cell death, indicating miR 
profiles can inform on mechanisms of damage in the kidney 
and intra-renal processes (Pavkovic et al. 2016).

Table 1   Biofluid-detectable miRs that are altered by toxicants in dif-
ferent organs. Adapted from (Schraml et al. 2017; Laterza et al. 2009; 
Wang et al. 2009; Saikumar et al. 2012; Haghikia et al. 2012; Yokoi 
and Nakajima 2013; Nassirpour et al. 2014, 2015; Ogata et al. 2015; 
Nishimura et  al. 2015; Piegari et  al. 2016; Raitoharju et  al. 2016; 
Bergman et al. 2016; Koenig et al. 2016; Yan and Jiao 2016; Rouse 
et al. 2017; Bailey and Glaab 2018; Huang et al. 2018; Bailey et al. 

2019; Erdos et al. 2020). The number of targets from miRTarBase to 
some of the miRs are shown in parentheses. It is of note that the num-
bers are very high. Arguably, unless the miRs with large target num-
bers occur abundantly themselves, effects may be difficult to measure. 
Thus, it would be beneficial to take target expression into account and 
monitor differential expression during marker development

miRs altered by toxicants in target organs that can be detected in biofluids

Cardiotoxicity Liver Toxicity Kidney Toxicity Neurotoxicity Skeletal Muscle Toxicity Pancreas Toxicity

miR-1-3p (900 +)
miR-133a-3p (120 +)
miR-208a/b-3p (60/60)
miR-499a-5p (90)
miR-34a-3p (90)

miR-122-5p (600)
miR-192-5p (900)
miR-103a-3p (400)
miR-885-5p

miR-21-5p
miR-155-5p
miR-18a-5p
miR-30a-c (900)
miR-194 (200)
miR-197 (1000)
miR-200
miR-203
miR-320
Let-7d (400)

miR-9-3p
miR-384-5p
miR-922
miR-181c-5p
miR-633
miR-150-5p
miR-124a
miR-124-3p
miR-323

miR-133a
miR-133b
miR-1
miR-206

miR-216a-5p
miR-216b-5p
miR-217-5p
miR-375-3p
miR-148a
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Roadblocks to using miRs in drug‑safety 
assessment

Pre‑analytical challenges of using miRs 
in drug‑safety assessment

Consideration of sample type

Whilst there is undoubted potential for miRs to act as useful 
biomarkers, there are several challenges to overcome before 
they can be employed as routinely as markers ALT and 
AST. Although non-invasive sampling is extremely useful 
(Howell et al. 2018), processing and extraction from these 
sources is crucial to miR measurements. Sample type can 
be diverse (Weber et al. 2010), ranging from plasma and 
serum to fresh or fixed tissue/tumours, purified by methods 
including immunoprecipitation or laser capture microdissec-
tion (Pritchard et al. 2012). Typically, isolation is performed 
via chemical extraction and purification using commercially 
available kits, and for low yield samples such as serum or 
plasma incorporation of a step determining the recovery 
of oligos spiked-in at extraction may be necessary. Once 
extracted, miR sample quality can be assessed, for instance 
utilizing spectrophotometer instruments in conjunction with 
a suitable normalization strategy (Becker et al. 2010). Such 
spectrophotometry approaches can be used to normalize 
total RNA content between samples, but this does not show 
a correlation with actual miR content (Wang et al. 2012).

Measuring miRs directly in serological samples is an area 
of promise. Bailey et al. (2019) utilized volume input as a 
normalization technique rather than isolated RNA or spike 

in calibrators. Here a consistent volume of plasma was used 
per-assessment, meaning data could be normalized against 
this volume and no further normalization was necessary. 
Results were then presented as fold-changes detected in 
treated animals relative to controls (Bailey et al. 2019).

Monitoring sample quality is extremely important as it 
can have a significant bearing on the validity of results. One 
such approach is quantification of isomiR content. These 
variants are characterized by changes in canonical miR 
sequence at the 3’ and/or 5’ end(s) (Dhanoa et al. 2019). 
miR degradation involves 3’ modifications which can affect 
miR steady-state (Neilsen et al. 2012). Therefore, levels of 
isomiRs in a sample may be indicative of the extent of 3’ 
modifications and sample degradation, as shown in patient 
serum in one study where miR-122 sample degradation pro-
duced increased levels of isomiRs. Here canonical miR-122 
decreased over time with a concurrent increase of shorter 
isomiRs, with degradation enhanced under DILI (López-
Longarela et al. 2020). There are several tools for isomiR 
analysis which can be incorporated to determine sample 
quality, including RNA-seq tool isomiR-SEA (Urgese et al. 
2016), as well as CASMIR (Wu et al. 2018a) and miR-
isomiRExp (Guo et al. 2016), which both focus on detecting 
relevant isomiR patterns.

Circulating miRs are often assessed using serum or 
plasma as the measurable biofluid, which requires cen-
trifugation of whole blood (Bathum et al. 2001). Serum is 
cell-free liquid blood component following complete blood 
coagulation, whilst plasma is cell-free liquid blood com-
ponent alongside an anticoagulant such as ETDA or cit-
rate. This removal of cells is advised as cell contamination 

Table 2   A summary of the main advantages and disadvantages of using miRs as biomarkers of drug toxicity

miRs as biomarkers for use in drug-safety assessment

Potential Advantages Potential Disadvantages

Ubiquitous appearance in biofluids—serum, plasma, urine, saliva—ena-
bling non-invasive sampling

Tissue-specific expression patterns of certain miRs
High sequence homology between animal models and humans facilitates 

translation of miR biomarkers – an important feature for pre-clinical 
development

Enhanced stability in biofluids
Availability on robust detection platforms such as RT-qPCR, next genera-

tion RNA sequencing, microarray platforms and biosensors enabling 
parallel quantification of multiple miRs

Novel miR quantification methods being employed in research such as 
dynamic chemical labelling could facilitate point-of-care clinical detec-
tion

Signatures unique to different aetiologies
Can be measured in panels
Prognostic and mechanistic value
Knowledge of a wide range of expression levels of miRs as reflected in 

databases means miRs with low expression can be incorporated into 
panels

Measurement subject to sample quality and pre-analytical/analytical 
variability

Lack of consensus regarding controls and standardization of assays
Similar miR signatures resulting from many differing aetiologies
Biological variability can be high and potentially influenced by 

smoking, diet and other environmental factors. Normal reference 
ranges therefore difficult to determine for some miRs

No current clinical point-of-care assay
Low levels of expression of many individual miRs
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can impair miR quantification (Sohel 2016). Indeed, some 
investigations have attempted to discern which is preferable 
for miR measurement, although for cell type-specific miRs 
such as miR-122 a high correlation has been shown between 
serum and plasma profiles, whilst serum levels of miR-122 
have shown to positively correlate with levels of major lipids 
(Willeit et al. 2017).

For serum a rich source of platelets means actual miR 
profiles can be biased towards that of platelets, meaning 
double-centrifuged plasma with a suitable anticoagulant 
may be prioritized over serum (Sunderland et al. 2017) as 
target miRs may be present in platelets. However platelet 
contamination has shown to also distort results in plasma, 
with one study showing it caused higher concentrations of 
miRs -15b, -16, and -24, although upon removal of cellu-
lar and subcellular components miRs became equivalent to 
that of serum (McDonald et al. 2011). In contrast inhibi-
tion of coagulation in plasma tubes has previously led to 
comparatively higher miR content detected in serum, with 
serum coagulation triggering miR release due to trafficking 
between cellular compartments and the extracellular envi-
ronment. This again suggests properly centrifuged plasma 
may be preferable in comparison to serum for miR measure-
ment (Wang et al. 2012), as shown by one assessment where 
although platelet contamination persisted despite tight con-
trol of lab practices it was minimized by following additional 
centrifugation steps (Cheng et al. 2013).

Platelet contamination is not the only preparatory con-
dition that can affect plasma miR content. The degree of 
haemolysis is also crucial in determining the reliability of 
measurements of certain miRs. One such miR is miR-16, 
which is present in red blood cells with abundance and 
increase shown to be proportional to the degree of hae-
molysis, which therefore increases variability and reduces 
the capacity of red blood cell enriched miRs to act a refer-
ences (Kirschner et al. 2011). Such lysis of red blood cells 
can be a critical cofounder of circulating miR analysis in 
both serum and plasma, and therefore should be monitored, 
with approaches including quantifying free haemoglobin by 
measuring absorbance at 414 nm or retrospectively measur-
ing red blood cell enriched miRs such as miR-451 to detect 
erythrocyte rupture (Blondal et al. 2013).

Lastly, it has been reported that using heparin tubes for 
processing plasma from whole blood should be avoided as 
this can result in reduced detection of miRs (Glinge et al. 
2017) due to inhibition of PCR amplification (Willems 
et al. 1993). The numerous factors regarding sample type 
and processing and how they can influence miR measure-
ment have led to a standardization protocol suggested by 
Glinge et al. (2017). Here, advice includes minimal sample 
shaking, separation of plasma/serum fractions and safe stor-
age of aliquoted samples at − 80 °C (Glinge et al. 2017). 
Table 3 highlights a proposed exemplar protocol discussing 

preferable sample collection with the hope of minimizing the 
influence of the considerations discussed on miR measure-
ment. Such quantitative variation is influenced by several 
factors, as shown in Fig. 2, and standardization of measure-
ments is something to which all biomarkers must adhere 
to minimize variability and maximize reproducibility. The 
relative novelty of miRs as biomarkers means such stand-
ardization has yet to be agreed upon, but if a more consistent 
approach can be adopted as suggested in Table 3 then steps 
can be established and replicated across studies, helping 
sample type and collection issues to be minimized.

Pre‑analytical standardization

As discussed, choosing sample type, for instance between 
serum and plasma, can have a significant effect on the results 
of miR measurements, as can both phlebotomy protocols 
and sample processing. Standardization is essential as repro-
ducibility can be compromised by assay imprecision, espe-
cially during RNA extraction, meaning a reliable sampling 
procedure is vital. Whilst miRs are protected from RNases 
when they are released into the extracellular milieu, they 
can degrade quickly when spiked back into plasma, mean-
ing certain sample types may require extraction methods 
that quickly inactivate endogenous RNases (Mitchell et al. 
2008; Pritchard et al. 2012). miRs that are associated with 
vesicles, exosomes or Ago2 can also be altered depending on 
sample processing, subsequently influencing the measure-
ment of some miRs (Arroyo et al. 2011), again highlighting 
the importance of correct sample processing.

Methods of extraction, as seen in Fig. 2, typically involve 
commercial phenol–chloroform or column based (or both 
combined) extraction kits. Different extraction methods 
have been compared in literature. In one comparison of five 
extraction methods, whilst all were suitable at extracting 
sample miRs, a high variability was seen between recovery 
of spike-ins, possibly indicating variability in RNA extrac-
tion efficiency (Brunet-Vega et al. 2015). It has also been 
reported when comparing methods that a combination of 
phenol–chloroform with a silica column based solid extrac-
tion method was preferable with respect to miR yield and 
integrity (Brown et al. 2018).

In the event of measuring miRs from archived samples 
then several sample and storage conditions must be consid-
ered to generate reliable results. Quality of the initial sample 
and age limit of samples may dictate whether the histori-
cal samples can be accurately investigated. If samples are 
prospectively collected in a quality study then the process 
should be described in the associated literature with details 
on time of sampling, blood tube used, if samples were on 
ice during processing and analysis as well as centrifugation 
speed, time and temperature. miRs have shown robustness 
at ultra-low temperature storage, for example one sample-set 
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Table 3   To create a standardized way to process samples for the 
measurement of miRs, a universal protocol must be developed to 
address issues in variability caused by processing. This table shows a 

possible exemplar developed by the TransBioLine IMI consortium for 
processing plasma for miR analysis

A recent exemplar protocol that has been developed by the IMI TransBioLine consortium for prospective plasma sample collection for the pur-
pose of miR analysis

1) Avoid haemolysis by following best practices
* Use good and consistent sample collection devices throughout a study (e.g. BD Vacutainer)
* Follow manufacturer’s instructions
* Avoid drawing blood from a hematoma
* Avoid foaming of the sample
* Make sure the venipuncture site is dry
* Avoid a probing, traumatic venipuncture
* Avoid prolonged tourniquet application or fist clenching
* Use correct size needle (~ 22 gauge)
* Fill vacuum tubes completely
2) EDTA anticoagulant. EDTA is most commonly used and available across labs. It is compatible with the protocols from other assay providers
3) Storage temperature between collection and centrifugation should be 4 °C. Our data suggest that cooled storage can reduce platelet activation 

and might improve stability of non-platelet miRs during longer storage times
4) Recommended storage times between blood collection and centrifugation/frozen storage was set to within 2 h
5) Double-centrifugation of plasma for complete removal of platelets. The first centrifugation step is performed at 2000×g (instead of 1000×g), 

to be compatible with plasma collection for protein biomarker analysis and hence facilitate the lab process and reduce errors
6) Storage and shipment of plasma in frozen state (− 80 °C and dry ice, respectively)

Fig. 2   Factors to consider when measuring miRs that could poten-
tially contribute to technical variability in miR bioanalysis. Both 
pre-analytical and analytical factors can contribute directly as well 

as indirectly to variation in the measurement of miRs across different 
platforms (Pritchard et al. 2012; Sohel 2016; Zhao et al. 2018; Bailey 
et al. 2019)
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was stored without issue for seventeen years (Matias-Garcia 
et al. 2020), however details such as time from sampling to 
storage at − 20 or − 80 °C, time spent in freezer until analy-
sis and number of freeze thaw cycles are all still important. 
Quality of historic samples could be further assessed by 
incorporating routine isomiR quantification using control 
samples, with increased isomiR presence correlating with 
miR degradation (López-Longarela et al. 2020).

RNA integrity is another factor which can impact the 
outcome of RT-qPCR analysis, and evaluating integrity is 
recommended as a routine step in pre-PCR miR analysis as 
total RNA integrity can interfere with techniques such as 
miR quantification, thus potentially compromising expres-
sion profiling of miRs (Becker et al. 2010). RNA integrity 
should therefore be monitored to allow consistent results, 
especially in archived samples.

For miR measurement to reach a confidence level where it 
can be routinely applied in the clinic pre-analytical variabil-
ity as discussed here must be minimized by incorporation of 
more standardized, simplified approaches. The addition of 
a known concentration of exogenous synthetic miR before 
RNA extraction for instance represents a step to increase 
reproducibility and measurement confidence, meaning vari-
ations in RNA expression from results are more likely to be 
biologically meaningful and less likely to be due to experi-
mental variability such as during RNA isolation or cDNA 
synthesis.

One example of researchers adopting more standardized 
and reliable approaches in miR measurement is by Glaab 
et al. (2018). Investigators evaluating the performance of 
liver and skeletal muscle-specific miRs versus traditional 
aminotransferases to detect DILI in rats recognized several 
challenges in isolating and measuring miRs from serum or 
plasma samples. The need for large plasma volume, limited 
miR endpoints, and normalization issues such as differences 
in plasma RNA levels due to toxicity, variability in total 
RNA isolation and potential need for a spike in control all 
impacted pre-analytical approaches. To overcome these dif-
ficulties a method was developed and optimized where a 
small 10 µl aliquot of plasma/serum was diluted in 100 µl 
water that was then applied directly into the reverse tran-
scription reaction, without isolating the RNA beforehand. 
This addressed normalization and isolation artefacts and was 
used for all later miR analyses (Glaab et al. 2018, unpub-
lished data). Such minimizing of pre-analytical variability 
may be essential for miRs reaching a reproducibility level 
suitable for the clinic.

Analytical standardization

Pre-analytical considerations can have a major effect on 
result outputs from miR investigations, and so too can the 
analysis platform chosen for such miR profiling. For any 

biomarker to be clinically viable for drug-safety assessment 
it requires a reliable and robust detection platform. Current 
options for miR detection each have positive and negative 
aspects in terms of range, sensitivity and cost (Pritchard 
et al. 2012). A microarray approach is capable of identifying 
the expression of thousands of miRs in many species simul-
taneously (Liu et al. 2008), whilst RNAseq is highly accurate 
and can detect novel miRs, however it can display a lack of 
sensitivity for certain sample types (Kelly et al. 2013). Per-
haps more appropriate to a drug-safety assessment setting 
is RT-qPCR, which can provide absolute quantification and 
(in-lieu of an easy-to-use point-of-care testing system) is less 
reliant on computational expertise.

Quantifiable metrics were used to compare the three 
analysis platforms to assess their sensitivity, specificity and 
reproducibility when measuring 196 different miRs as part 
of the miR quality control study (miRQC). Here, Mestdagh 
et al. (2014) concluded that approaches should be used in 
tandem such as RT-qPCR validation of screening experi-
ments. qPCR platforms were shown to have greater sensi-
tivity overall, especially when dealing with low-input RNA 
samples such as body fluids (Mestdagh et al. 2014). Whilst 
the approaches selected for determining miRs in biofluids 
are well established, certain technical aspects in the meth-
ods used require more universal standardization in order for 
measurements to become reliable in the eyes of regulators. 
Sufficient standardization and clinical data assessing a wide 
range of compounds and pathologies alongside traditional 
biomarkers will be vital in helping miR measurements 
becoming viable in routine assessment.

Normalization of results is important for any biological 
measurement to be reproducible and reliable. For miRs this 
is especially important, with RT-qPCR requiring a robust 
reference gene stable across all samples, as differences must 
be comparable to quantify measurements relevant to signifi-
cant changes. Standardization is essential, as studies have 
described conflicting data when using different normaliza-
tion strategies, with different methods leading to different 
outputs. This is evident with addition of exogenous oligonu-
cleotides such as cel-miR-39, which correct for qPCR data 
related to processes such as RNA extraction but not for other 
factors to which it is not exposed. This represents an obsta-
cle to miR profiling becoming common use in drug-safety 
assessment, and such factors must be kept in mind to select 
a reliable approach and thus generate reliable data (Faraldi 
et al. 2019).

A common normalization approach is versus an endog-
enous control gene which can correct for variables including 
differences in starting quantity. Ideally the endogenous con-
trol should be stable and extracted and quantified in the same 
fashion as the target miR (Das et al. 2016). Although PCR 
measurements commonly use endogenous controls such as 
beta-actin or GAPDH these are unsuitable for RNA analysis. 
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This means selection often relies on previous studies, with a 
common choice being U6- (RNU6B), a small nuclear RNA 
molecule of the same class (Que et al. 2013; Wang et al. 
2014). Despite regular use U6- has been shown to be unsuit-
able as a reference due to high variability between samples, 
in both healthy and patient groups (Benz et al. 2013; Xiang 
et al. 2014; Lamba et al. 2014; Masè et al. 2017). Analysis 
tools such as Normfinder, Genorm and Bestkeeper may be 
employed to select the most appropriate endogenous con-
trols. Das et al. (2016) successfully used Normfinder to 
generate appropriate controls miR-25-3p and miR-93-5p for 
measurements from cancer cell lines (Das et al. 2016), whilst 
such tools allowed selection of optimal endogenous controls 
including let-7a and miR-103 for measuring exosomal serum 
samples in healthy individuals and hepatitis B/hepatocel-
lular carcinoma patients (Occhipinti et al. 2016). Combin-
ing endogenous controls, such as let-7d/g/i, has also shown 
promise, with this option superior for serum miR measure-
ment over U6- and RNU44/48 (Chen et al. 2013). There is 
no one common endogenous gene that can be used for all 
miR measurements, meaning selection of stably expressed 
miRs such as miR-152 or miR-23b (Lamba et al. 2014) or 
synthetic additions from organisms such as C.elegans may 
be more suitable normalizers.

The issue of normalization standardization has led to sev-
eral studies looking at new approaches. One such approach is 
measurement of fold-change ratios of different miRs under 
pathology. Ratio measurements are used to classify DILI 
subtypes, with presentations determined by ratios of liver 
enzymes defined as the R-Value. López-Riera et al. (2020) 
quantified miR serum levels as fold-changes measured 
at admission and remission, and then incorporated fold-
changes of individual miRs into ratios between different 
miRs. Differences in individual ratios of miR-122/miR-
451a and miR-122/miR-16, respectively, enabled correct 
separation of most patients into hepatocellular and chole-
static DILI groups on account of greater miR-122 induc-
tion in hepatocellular DILI and preferential miR-451a/-16 
repression in cholestatic DILI. Here miR ratio values showed 
excellent predictive performance (López-Riera et al. 2020). 
This approach is significant as if diagnosis can be made on 
relevant changes between two quantifiable miRs then there 
is less reliance on a housekeeping standard. Such approaches 
may be important in overcoming current normalization 
limitations.

In order for miR measurements to be reliably used in 
drug-safety assessments there needs to be some element of 
consistency in normalization approaches employed. This is 
true for any drug-safety related measurement as results must 
be reliable across all patients and groups to make suitable 
conclusions. In terms of miR quantification, endogenous 
controls are common and can be tailored for specific studies, 
but no endogenous miR can be detectable and stable across 

all disease states. Therefore more appropriate options with 
better standardization potential may be exogenous spike-ins 
or volume normalization as shown in Fig. 2. There needs to 
be a conscious approach in miR measurement research to 
develop and select a consistent standardized measurement 
strategy across studies. This could involve combination of 
some of the approaches discussed here, for instance incorpo-
rating isomiR quantification into RNAseq sample pipelines 
as a measure of sample quality. If a more universal approach 
can be adopted this will lead to more reliable and reproduc-
ible analyses, which will represent a significant step towards 
miR measurement becoming a viable drug-safety tool in the 
clinic.

Inter‑ and intra‑individual variability in basal miR 
expression

For miR measurements to be reliable indicators of injury, 
a good understanding of the presence and significance of 
variation in their basal levels is required. Intra-individual 
variation has been assessed by Wu et al. (2018b), where 
circulating miR levels in repeated samples were collected 
from fifty-one healthy volunteers over a 6–12-month period. 
185 miRs were detected in at least 10% of plasma samples, 
69 in 50% and 28 in 90%. The levels of 75 miRs revealed 
an intra-class coefficient (ICC) of > 0.5 when analysed in a 
subject at two time points 6 to 12 months apart, suggesting 
reasonable similarity, with a median ICC of 0.4 for the total 
185 miRs. Notably, ICC was higher for miRs with higher 
plasma levels or higher detection rates (Wu et al. 2018b).

A study observing variability of DILI biomarkers by 
Church et al. (2019) included discussion of miR-122 which 
was shown to have a wide intra- and inter-subject variability 
across healthy volunteers (Church et al. 2019). Similarly, 
another study describing variability of miR-122 in serum 
found a higher-than-expected variability in healthy volun-
teers, with miR-122 producing a > 100-fold variation in two 
assessments whilst in comparison ALT variability was as 
low as fivefold. This large variability in healthy volunteers 
could have implications in the use of miR-122 as a DILI 
biomarker and therefore will need further investigation (Vogt 
et al. 2019). Indeed, this is an area requiring more research 
in general, it is important to find out if age, sex and race 
have a significant effect on the identity and quality of basal 
circulating miRs in large volunteer cohorts. Studies may 
therefore require collection of patient-baseline samples to 
perform intra-individual analysis. This could be possible in 
Phase I studies however it would not be feasible in a clinical 
scenario.

Although variation in healthy cohorts is an impor-
tant consideration that requires further studies, context is 
important when relating its significance to the viability of 
miRs to act as circulating biomarkers, particularly miR-122. 
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Observed miR-122 variations within a healthy group may 
be less significant in terms of biomarker performance due 
to the large dynamic range of miR-122, which is described 
as a key advantage in distinguishing false positives and 
false negatives of DILI. As shown by Starkey Lewis et al. 
(2011) the large signal of miR-122 under injury can remain 
significantly above the upper limit of the healthy cohort 
despite variability within that group, with minimal crosso-
ver between healthy and patient cohorts (Starkey Lewis et al. 
2011). A similar trend was observed in a study looking at 
circulating miR-126 decrease as a biomarker for vascular 
dysfunction. Whilst large variation was seen in healthy and 
patient cohorts, miR-126 remained 88-fold lower in vascu-
litis patients than controls, suggesting its use as a potential 
vascular injury marker (Scullion et al. 2021).

Beyond qPCR

There is a push to develop techniques in miR detection that 
do not require the specialized equipment, time and train-
ing as with the current options, with RT-qPCR for instance 
unsuitable for early diagnostics on a larger scale (Ouy-
ang et al. 2019). Development of more suitable detection 
methods could mean a better chance of miR profiling being 
adopted in diagnostics.

With the aim of taking miR measurements to the bedside, 
whole blood measurements have been attempted to hasten 
their detection in the clinic. This is possible for miR-122 at 
least, as its high liver specificity means it is not expressed 
in cell types found in whole blood. This potential was high-
lighted in a study where finger venipuncture used to obtain 
capillary blood showed an 86-fold increase in miR-122 
compared to healthy patients, with miR-122 levels compa-
rable to that of plasma. This novel, near patient diagnostic 
test showed the potential for one blood drop to report DILI. 
Such point-of-care testing with easy access to transfer of 
miR-122 into testing could mean rapid DILI diagnosis and 
therefore quicker care (Vliegenthart et al. 2017). Another 
rapid and potentially cost-effective method for miR measure-
ment is isothermal miR amplification. During amplification 
high quantities of H + can be generated, inducing significant 
changes in pH that can be monitored by pH sensitive indica-
tors. Quantification is feasible as miR abundance is linked 
to the degree of indicator colour change, with this method 
comparable to RT-qPCR in successfully quantifying cancer 
cell miRs (Feng et al. 2017).

Another suggested alternative to RT-qPCR with reported 
significantly better sensitivity is droplet digital PCR 
(ddPCR), which has previous success in measuring plasma 
miRs as biomarkers for gastric cancer (Zhao et al. 2018; 
Ouyang et al. 2019). ddPCR has the potential to overcome 
current normalization issues, provide greater precision and 

be higher throughput, however when compared with qPCR 
for miR serum analysis results were largely concordant 
between the two methods (Campomenosi et al. 2016). The 
combination of a PCR step and a microarray identification 
step has also been implemented into a potentially portable 
prototype machine, requiring less sample preparation and 
showing enhanced sensitivity (Vaca 2014).

Development of an extraction-free, amplification-free 
miR-122 dynamic chemical labelling (DCL) detection assay 
also shows promise. The assay uses hybridization of miR-
122 to an abasic peptide nucleic acid probe, which has a 
reactive amine replacing a specific nucleic acid, conjugated 
to superparamagnetic beads. This method was shown to 
identify patients at risk of DILI whilst displaying enhanced 
accuracy compared to PCR in terms of analysing miR-122 
isomiRs. This is an advantage over current PCR assays 
which have variable efficiency across isomiR detection, 
suggesting a mix of isomiRs in a clinical sample may com-
promise accurate PCR quantification of miR-122 and other 
miR species. Addition of DCL beads to serum had the fur-
ther advantage of stabilizing miR-122 signal for 14 days at 
room temperature, whereas signal degraded without beads 
(López-Longarela et al. 2020).

Another PCR-free technique for direct detection and 
quantification of miRs is Chemical Nucleic Acid Testing 
(Chem-NAT), which utilizes a labelled peptide nucleic acid 
capture probe with a reactive nucleobase that can base pair 
to the target miR, without requiring extraction of miRs from 
biological source. Researchers utilized this to formulate a 
Chem-NAT ELISA, which allowed accurate quantification 
of potential cancer biomarker miR-451a, whilst overcoming 
limitations of conventional miR analysis associated meth-
ods such as pre-extraction (Marín-Romero et al. 2018). 
The innovative novel approaches described here show how 
researchers are overcoming the challenges and limitations 
associated with current miR measurement techniques and 
represent promise in the effort to develop more clinically 
suitable miR diagnostic tools.

The analysis of genome‑wide circulating miR 
datasets

The potential of circulating miRs to function as early indica-
tors of tissue damage encourages the systematic exploration 
of genome-wide analysis of the miRnome, currently com-
prising of over 2000 miRs (Kozomara et al. 2019). Ideally, 
similarly to other omics technologies, miR biomarkers are 
more valuable if they reflect a specific mechanism that may 
be relevant for the disease pathophysiology. Moreover, the 
complexity of miR regulatory networks, the tissue specific-
ity and the timing of miR release suggests that considering 
combinations of multiple miR biomarkers is indispensable. 
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Here we will look at some evidence in support of multi-miR 
marker signatures and discuss computational strategies that 
maximize the chance that such mechanistic biomarkers sig-
natures are discovered from circulating miR genome-wide 
datasets.

A review on circulating miRs as cancer biomarkers sug-
gested that single miR molecules could hardly meet the 
sensitivity and specificity criteria for candidate biomarkers 
(Wang et al. 2018). Regarding drug-induced liver injury, 
the extensively described and tissue specific biomarker can-
didate miR-122 still lacks specificity, as it is also altered 
in other liver pathologies. Combinations of multiple miRs, 
or even composite measures including other types of bio-
markers, may have the potential of being more specific and 
being able to differentiate different pathologies (Johann Jr 
and Veenstra 2007; Zethelius et al. 2008; Martinelli et al. 
2017). An independent validation study of previously pos-
tulated serum miR biomarkers for non-alcoholic fatty liver 
disease (NAFLD) confirmed the predictive value of miR-122 
among other miRs, but found that 5 miRs (miR-192, -27b, 
-22, -197 and -30c) appeared specific for NAFLD when 
compared to DILI patients (López-Riera et al. 2018). The 
same study reported that models combining both clinical 
and miR variables showed improved predictivity. Another 
pilot study investigating serum miR biomarkers for diag-
nosis of cirrhosis and hepatocellular carcinoma (HCC) in 
hepatitis C patients found that a logistic regression model 
consisting of miR-122-5p and miR-409-3p was capable of 
distinguishing cirrhosis from mild disease, and that the pre-
diction was improved by adding aminotransferase-to-platelet 
ratio (APRI) or Fibrosis 4 (FIB-4) clinical variables to the 
model (Weis et al. 2019). The study also showed that a panel 
consisting of miR-122-5p, miR-486-5p and miR-142-3p was 
capable of distinguishing HCC from cirrhosis while outper-
forming the only current biomarker alpha-fetoprotein (AFP).

Altogether this supports the view that a sophisticated 
computational approach based on testing combination of 
miRs is of fundamental importance. Development of multi-
biomarker models is typically based on multivariate statisti-
cal approaches, including machine learning approaches, and 
follows a general pipeline as detailed in Fig. 3. After data 
processing and normalization, generating predictive models 
involves splitting the data into training and test sets. The 
training set is used to build a model to predict outcome (e.g. 
categories of disease severity) while the test set assesses the 
ability of the model to correctly predict the same outcome in 
a dataset other than the one used to produce the model. An 
optimal biomarker model resulting from this process would 
be accurate in predicting outcome in both training and test 
sets. Due to the high dimensionality of these datasets, testing 
every possible combination of variables to identify the most 
predictive model is not a viable option, even with the compu-
tational power that is available. Therefore, the development 

of a predictive model must include a feature reduction or a 
feature selection step. Feature reduction involves combining 
the variables using a numerical transformation to obtain a 
smaller number of components that maximize the informa-
tion. These components are then used as variables to develop 
the model. In contrast, feature selection involves selecting a 
subset of relevant variables to be included in the model. This 
step is not only important for reducing the computational 
time of the analysis, as it also decreases the chances of over-
fitting and allows the development of a biologically inter-
pretable model. Several approaches can be taken to perform 
feature selection, such as the use of univariate procedures 
where each variable is tested independently, or multivariate 
variable selection procedures, designed to test combination 
of variables that maximize prediction. Multivariate variable 
selection procedures typically optimize variable subsets by 
progressive improvement of an initial random set by trial and 
error. During the process of optimization, biological knowl-
edge can be used to develop a highly biologically relevant 
subset (Colaco et al. 2019).

Coupled to the dimensionality reduction component is 
the development of a prediction model. Generally, meth-
ods to develop a model are categorized as supervised or 
unsupervised learning, where supervised learning is applied 
for prediction of previously defined categories where data 
is labelled accordingly, whereas unsupervised learning 
clusters the data based on the naturally occurring patterns 
with no previously defined outcomes. In the context of bio-
marker development, mostly there is interest of distinguish-
ing between pre-defined groups, where the application of 
supervised approaches is useful. Nevertheless, unsupervised 
approaches could provide insight in cases where there is 
uncertainty regarding classification categories (e.g. diver-
gent classification systems for disease severity). For super-
vised approaches, the choice of the algorithm depends on the 
type of the pre-defined outcome. Categories (e.g. healthy vs 
diseased) require classification algorithms whereas continu-
ous outcome variables require regression algorithms.

The methodology described above can be very effective, 
but since the procedure is unaware of the biological context 
of the marker, there is a chance of ending up with a highly 
predictive marker set lacking meaningful biological interpre-
tation. Biomarkers containing functional relevance are more 
likely to be discovered if ‘knowledge’ is incorporated in the 
variable selection or in the process of model optimization. 
In the context of circulating miRs, prior knowledge such as 
known or predicted miR target genes (Singh 2017), tissue 
localization (Ludwig et al. 2016), miR gene promoters (De 
Rie et al. 2017), genetic variation influencing their expres-
sion (‘mirQTLs’) (Nikpay et al. 2019) and being part of a 
particular molecular pathway or gene ontology is informa-
tion that can be used to drive the selection of biologically 
interpretable miR subsets. Several types of strategies can 
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be used to incorporate these knowledge sources into model 
development, from simply selecting features matching spe-
cific criteria to generation of biological networks represent-
ing functional relationships. As an example, Vafaee et al. 
(2018) applied system-based approaches to identify plasma 
miR signatures predictive of prognosis of colorectal cancer 
patients. By integrating plasma miR profiles with a miR-
mediated gene regulatory network containing annotations 
of relationships with genes linked to colorectal cancer, the 
study identifies a signature comprising of 11 plasma miRs 
predictive of patients’ survival outcome which also target 
functional pathways linked to colorectal cancer progression. 
Using the integrated dataset as input, the authors developed 
a bi-objective optimization workflow to search for sets of 
plasma miRs that could precisely predict patients’ sur-
vival outcome and, simultaneously, target colorectal cancer 
related pathways on the regulatory network (Vafaee et al. 
2018). Since the amount of biological knowledge across dif-
ferent research fields is variable, and there is a lot yet to be 
discovered, alternative strategies could involve the appli-
cation of algorithms that would increase the likelihood of 
selecting functionally relevant features while still allowing 
for the eventual selection of features based solely on their 
predictive power. This more balanced approach would allow 
for the selection of features with no known association to the 
outcome, which could be useful to biological contexts lack-
ing extensive knowledge available and have the potential to 
reveal novel functional associations.

Thus, a plethora of strategies can be implemented to pre-
dict outcome from high-dimensional data. In the context of 
biomarker development, it is important that the decision-
making process from predictive markers is understandable 
by researchers and interpretable by clinicians. This impacts 
the selection of methods to develop the model, favouring 
interpretable models (e.g. decision trees). This interpretabil-
ity is being improved, for example use of a deep-learning 
based framework, where features can be discovered directly 
from datasets with excellent performance but requiring sig-
nificantly lower computational complexity than other models 
that rely on engineered features (Cordero et al. 2020). Addi-
tionally, systems-based approaches that use prior biologi-
cal knowledge can help in achieving this by guiding model 
development towards functionally relevant markers. One 
challenge presented in this area may be the analysis of mul-
tiple miRs in one test as a biomarker panel. Toxicity can be 
an acute presentation, and clinicians will need a quick turna-
round in results. As already discussed, new assays may be 
needed and if a miR panel is of interest then multiple miRs 
will need to be optimized on the platform, further compli-
cating a process that is already difficult for analysis of one 
miR of interest. This is something that should be kept in 
consideration when taking such approaches whilst looking 
at miR biomarker panels.

Fig. 3   General pipeline for biomarker model development from 
global circulating miR datasets using knowledge-based approaches. 
Processed and normalized data is split into training and test sets, 
where the training set is used to build a model to predict outcome 
(healthy and diseased), while the test set assesses the ability of the 

model to correctly predict the same outcome in ‘unseen’ data. Prior 
biological knowledge can be incorporated in the algorithm for model 
development to increase the chances of finding an informative signa-
ture comprising of mechanistically-associated biomarkers
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Future considerations

Proof of the clinical utility of measuring miRs in drug-safety 
assessment is probably the major consideration in this field 
going forward. One of the issues of establishing miR meas-
urements in a clinical setting is to increase the frequency of 
their use—part of the reason that this has not been the case 
is the lack of standardization in performance of the assays 
and reporting of the data. Pharmaceutical, clinical and reg-
ulatory organisations require reassurance of the reliability 
of biomarker measurements to utilize their full potential. 
Despite some favourable opinions by regulators, at present 
miRs, and notwithstanding some advantages over existing 
biomarkers, are not widely used in clinical decision-making. 
There is therefore an impetus for researchers to address fully 
the relative usefulness of these molecules as biomarkers. 
This includes the pull for Industry investigating the use of 
biomarkers to share exploratory data, thereby to increase 
the confidence in utilizing putative biomarkers in a clinical 
setting. To some extent this is now being done through US 
consortia as well as the Innovative Medicine Initiative bio-
marker pipeline programme, TransBioLine.

Standardization of miR measurements will be crucial if 
regulators are to accept miRs or indeed any other new bio-
marker class to be used alongside measurements employed 
currently. Clinicians, laboratories, and regulators need to 
collaborate to get to the stage where a point-of-care assay is 
agreed upon and adopted. As of now, this is unlikely to be 
through a qPCR format, as this is not time or cost -effective 
in a diagnostic environment. For the regulators of diagnos-
tic assays used in a clinical setting, concerns centre around 
the fact that much of the evidence that miRs make effective 
biomarkers is based on the biomarker itself but not on the 
actual assay used for its measurement. Essentially support 
for miRs is attributed to their molecular characteristics, but 
questions remain about the application of the methods used 
for their detection in a routine clinical setting. Research is 
now needed to look at multiple panels of miRs and establish 
signatures that might be attributed to differing aetiologies. 
It will be important to determine if these signatures can also 
inform on progression and prognosis of drug-induced dis-
ease, by considering the dynamics of the miRs in question. 
In a very practical sense, miRs are generally well-conserved 
and this is important as it can obviate the need to spend 
time or money developing assays for biomarkers in differ-
ent species. However, regulation hinges on the assay itself 
and its reliability—not just the exciting information that can 
be revealed by measuring the biomarkers themselves. Any 
clinically-used assay must be robust, inexpensive, relatively 
user-independent and have as short a turnaround as possi-
ble, with a ‘bedside’ test as the ultimate aim of biomarker 
research efforts. Whilst useful in a lab, the current approach 
of PCR-based measurement is simply too expensive for a 

bedside test, lacking cost effectiveness for larger-scale opera-
tion. This highlights how many of the challenges discussed 
here are reflective of the nature and regulation of biomarker 
use in drug-safety in general, and any novel marker must 
overcome such rigorous challenges to become suitable in a 
clinical setting.

Finally, considering the advantages of miRs as biomark-
ers, different signatures of miRs will need to be proven for 
their use in drug-safety assessment, i.e. that a signature 
is due to toxicity and not due to intra-individual or inter-
individual variability, or another underlying condition or 
disease. Understanding these signatures in reference to 
drug-safety is going to require researchers to understand 
the meaning of these signatures in large healthy volunteer 
cohorts and different disease states. Implementing stand-
ardized measurement regimes may pave the way for miRs 
to achieve regulatory acceptance as biomarkers, and this 
challenge is being taken up in research as highlighted by 
the investigations into exciting new techniques as discussed 
here. Their potential as biomarkers (alone, in miR panels, or 
in combination with other molecules) has been established 
and remains a significant cause for optimism. Research 
is ongoing to help improve knowledge to facilitate miRs 
becoming viable clinical biomarkers. The strong interest in 
miRs as biomarkers of toxicity from regulators, industry and 
research can facilitate attempts to overcome the challenges 
currently restricting miR use in the clinic. If successful, this 
may unlock the clinical biomarker potential of circulating 
miRs in the future.
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