2,036 research outputs found

    Near-Infrared Spectroscopy of the Y0 WISEP J173835.52+273258.9 and the Y1 WISE J035000.32-565830.2: the Importance of Non-Equilibrium Chemistry

    Get PDF
    We present new near-infrared spectra, obtained at Gemini Observatory, for two Y dwarfs: WISE J035000.32-565830.2 (W0350) and WISEP J173835.52+273258.9 (W1738). A FLAMINGOS-2 R=540 spectrum was obtained for W0350, covering 1.0 < lambda um < 1.7, and a cross-dispersed GNIRS R=2800 spectrum was obtained for W1738, covering 0.993-1.087 um, 1.191-1.305 um, 1.589-1.631 um, and 1.985-2.175 um, in four orders. We also present revised YJH photometry for W1738, using new NIRI Y and J imaging, and a re-analysis of the previously published NIRI H band images. We compare these data, together with previously published data for late-T and Y dwarfs, to cloud-free models of solar metallicity, calculated both in chemical equilibrium and with disequilibrium driven by vertical transport. We find that for the Y dwarfs the non-equilibrium models reproduce the near-infrared data better than the equilibrium models. The remaining discrepancies suggest that fine-tuning the CH_4/CO and NH_3/N_2 balance is needed. Improved trigonometric parallaxes would improve the analysis. Despite the uncertainties and discrepancies, the models reproduce the observed near-infrared spectra well. We find that for the Y0, W1738, T_eff = 425 +/- 25 K and log g = 4.0 +/- 0.25, and for the Y1, W0350, T_eff = 350 +/- 25 K and log g = 4.0 +/- 0.25. W1738 may be metal-rich. Based on evolutionary models, these temperatures and gravities correspond to a mass range for both Y dwarfs of 3-9 Jupiter masses, with W0350 being a cooler, slightly older, version of W1738; the age of W0350 is 0.3-3 Gyr, and the age of W1738 is 0.15-1 Gyr.Comment: Accepted on March 30 2016 for publication in Ap

    A uniform analysis of HD209458b Spitzer/IRAC lightcurves with Gaussian process models

    Full text link
    We present an analysis of Spitzer/IRAC primary transit and secondary eclipse lightcurves measured for HD209458b, using Gaussian process models to marginalise over the intrapixel sensitivity variations in the 3.6 micron and 4.5 micron channels and the ramp effect in the 5.8 micron and 8.0 micron channels. The main advantage of this approach is that we can account for a broad range of degeneracies between the planet signal and systematics without actually having to specify a deterministic functional form for the latter. Our results do not confirm a previous claim of water absorption in transmission. Instead, our results are more consistent with a featureless transmission spectrum, possibly due to a cloud deck obscuring molecular absorption bands. For the emission data, our values are not consistent with the thermal inversion in the dayside atmosphere that was originally inferred from these data. Instead, we agree with another re-analysis of these same data, which concluded a non-inverted atmosphere provides a better fit. We find that a solar-abundance clear-atmosphere model without a thermal inversion underpredicts the measured emission in the 4.5 micron channel, which may suggest the atmosphere is depleted in carbon monoxide. An acceptable fit to the emission data can be achieved by assuming that the planet radiates as an isothermal blackbody with a temperature of 1484±181484\pm 18 K.Comment: 18 pages, 5 figures, 6 tables. Accepted by MNRA

    Superfluid turbulence and pulsar glitch statistics

    Full text link
    Experimental evidence is reviewed for the existence of superfluid turbulence in a differentially rotating, spherical shell at high Reynolds numbers (\Rey\gsim 10^3), such as the outer core of a neutron star. It is shown that torque variability increases with \Rey, suggesting that glitch activity in radio pulsars may be a function of \Rey as well. The \Rey distribution of the 67 glitching radio pulsars with characteristic ages τc106\tau_c \leq 10^6 {\rm yr} is constructed from radio timing data and cooling curves and compared with the \Rey distribution of all 348 known pulsars with τc106\tau_c \leq 10^6 {\rm yr}. The two distributions are different, with a Kolmogorov-Smirnov probability 13.9×103\geq 1 - 3.9 \times 10^{-3}. The conclusion holds for (modified) Urca and nonstandard cooling, and for Newtonian and superfluid viscosities

    Reduced systemic arterial compliance in stable heart transplant patients

    Get PDF

    Polyunsaturated fatty acids in fishes increase with total lipids irrespective of feeding sources and trophic position

    Get PDF
    Trophic transfer and retention of dietary compounds are vital for somatic development, reproduction, and survival of aquatic consumers. In this field study, stable carbon and nitrogen isotopes, and fatty acids (FA) contents in invertebrates and fishes of pre-alpine Lake Lunz, Austria, were used to (1) identify the resource use and trophic level of Arctic charr (Salvelinus alpinus), pike (Esox lucius), perch (Perca fluviatilis), brown trout (Salmo trutta), roach (Rutilus rutilus), and minnow (Phoxinus phoxinus) and (2) examine how polyunsaturated fatty acids (PUFA; i.e., omega-3 and -6 PUFA) are related to total lipid status, littoral-pelagic reliance, and trophic position. Stable isotope data suggest that pike, perch, and minnow derived most of their energy from littoral resources, but minnows differed from pike and perch in their trophic position and PUFA composition. The co-occurrence of cyprinids, percids, and pike segregated these fishes into more lipid-rich (roach, minnow) and lipid-poor (pike, percids) species. Although the relatively lipid-poor pike and percids occupied a higher trophic position than cyprinids, there was a concurrent, total lipid-dependent decline in omega-3 and -6 PUFA in these predatory fishes. Results of this lake food-web study demonstrated that total lipids in fish community, littoral-pelagic reliance, and trophic position explained omega-3 and -6 PUFA in dorsal muscle tissues. Omega-3 and -6 PUFA in these fishes decreased with increasing trophic position, demonstrating that these essential FAs did not biomagnify with increasing trophic level. Finally, this lake food-web study provides evidence of fish community-level relationship between total lipid status and PUFA or stable isotope ratios, whereas the strength of such relationships was less strong at the species level.Peer reviewe

    Helicase on DNA: A Phase coexistence based mechanism

    Get PDF
    We propose a phase coexistence based mechanism for activity of helicases, ubiquitous enzymes that unwind double stranded DNA. The helicase-DNA complex constitutes a fixed-stretch ensemble that entails a coexistence of domains of zipped and unzipped phases of DNA, separated by a domain wall. The motor action of the helicase leads to a change in the position of the fixed constraint thereby shifting the domain wall on dsDNA. We associate this off-equilibrium domain wall motion with the unzipping activity of helicase. We show that this proposal gives a clear and consistent explanation of the main observed features of helicases.Comment: Revtex4. 5 pages. 4 figures. Published versio

    Results from a set of three-dimensional numerical experiments of a hot Jupiter atmosphere

    Get PDF
    We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.Comment: 26 pages, 22 Figures. Accepted for publication in Astronomy and Astrophysic

    Interfacial control of vortex-limited critical current in type-II superconductor films

    Full text link
    In a small subset of type-II superconductor films, the critical current is determined by a weakened Bean-Livingston barrier posed by the film surfaces to vortex penetration into the sample. A film property thus depends sensitively on the surface or interface to an adjacent material. We theoretically investigate the dependence of vortex barrier and critical current in such films on the Rashba spin-orbit coupling at their interfaces with adjacent materials. Considering an interface with a magnetic insulator, we find the spontaneous supercurrent resulting from the exchange field and interfacial spin-orbit coupling to substantially modify the vortex surface barrier, consistent with a previous prediction. Thus, we show that the critical currents in superconductor-magnet heterostructures can be controlled, and even enhanced, via the interfacial spin-orbit coupling. Since the latter can be controlled via a gate voltage, our analysis predicts a class of heterostructures amenable to gate-voltage modulation of superconducting critical currents. It also sheds light on the recently observed gate-voltage enhancement of critical current in NbN superconducting film
    corecore