521 research outputs found

    Design hazard identification and the link to site experience

    Get PDF
    The training, development and routes to charteredship of building design engineers have undergone a major transformation in recent years. Additionally, the duration and quality of site experience being gained by designers is reducing. While accident causation is often complex, previous research shows a potential link between design and construction accidents. The effectiveness of the UK’s Construction (Design and Management) (CDM) Regulations is being questioned, and designers regularly do not recognise the impact they can make on site safety. A newly developed hazard perception test was used to determine if students and design practitioners are able to identify hazards in designs and to establish if site experience impacts hazard identification. The results of the tests show an association between the ability to identify and mitigate hazards and possession of site experience. The results provide empirical evidence that supports previous anecdotal evidence. The results also question if the design engineers of today are suitably equipped to fulfil the designer’s responsibilities under the CDM Regulations

    Seismic Forces in Ancillary Components Supported on Piers and Wharves

    Get PDF
    This paper presents a simple procedure to estimate seismic forces in ancillary components (secondary systems) supported on marine structures such as piers, wharves, and marine oil terminals (primary systems). Since many such marine structures can be idealized as single-degree-of-freedom (SDOF) systems, this study uses a simple linear-elastic model with two DOF, one representing the marine structure and the other representing the ancillary component. This study shows that acceleration at the base of the secondary system is approximately equal to spectral acceleration at the fundamental period of the primary system. It also proposes a formula, which is an improvement over current ASCE 7-10 recommendations, to estimate acceleration amplification in the secondary system due to its flexibility when mass and period ratios of the secondary and primary systems are known. The procedure in this paper is strictly applicable to marine structures for which primarily a single mode contributes to seismic response

    DESIGNING PORT INFRASTRUCTURE FOR SEA LEVEL CHANGE: A SURVEY OF U.S. ENGINEERS

    Get PDF
    Seaports are particularly vulnerable to the impacts of climate change due to their coastal location. With the potential threat of up to 2.5m in sea level rise by 2100, resilient port infrastructure is vital for the continued operation of ports. There are strong economic and social incentives for seaports to provide long-term resilience against climate conditions. For example, service disruptions can cost billions of dollars and impact the livelihoods of those who depend on the port. Engineers play a pivotal role in improving the resilience of ports, as they are responsible for designing port infrastructure that will be adequately prepared for future sea level change (SLC). However, incorporating SLC is a challenging task due to the uncertainty of SLC projections, the long service lives of port infrastructure, and the differing guidelines and recommendations for managing SLC. Through an online survey of 85 U.S. port and marine infrastructure engineers, this research explores the engineering community’s attitude and approach to planning for SLC for large-scale maritime infrastructure projects. Survey findings highlight the extent that projects incorporate SLC, the wide range of factors that drive the inclusion of SLC, and the numerous barriers that prevent engineers from incorporating SLC into design. This research emphasizes that traditional engineering practices may no longer be appropriate for dealing with climate change design variables and their associated uncertainties. Furthermore, results call for collaboration among engineers, port authorities, and policy makers to develop design standards and practical design methods for designing resilient port infrastructure

    Mass transfer enhancement and improved nitrification in MABR through specific membrane configuration

    Get PDF
    One of the main energy consumptions in wastewater treatment plants (WWTPs) is due to the oxygenation of aerobic biological processes. In order to approach to an energy self-sufficient scenario in WWTPs, Membrane Aerated Biofilm Reactors (MABRs) provide a good opportunity to reduce the impact of aeration on the global energy balance. However, mass transfer limitations derived from poor flow distribution must be tackled to take advantage of this technology. In this work, in order to improve mass transfer between biofilm and bulk water, a specific configuration was developed and studied at laboratory scale, aimed at compactness, energy efficiency and high nitrification rates. Nitrification rates were higher in the innovative configuration than in the conventional one, achieving a Volumetric Nitrification Rate (VNR) as high as 575.84-g NH4-N m-8722;3 d-8722;1, which is comparable with confirmed technologies. Regarding energy consumption due to aeration, a reduction of 83.7% was reached in comparison with aeration through diffusers with the same Oxygen Transfer Efficiency (OTE). These results highlight the importance of hydrodynamic conditions and the membranes configuration on treatment performance.The Spanish Ministry of Economy and Competitiveness partiallyfunded this research through the Network of Excellence Red-NOVEDAR (CTQ2016-81979-REDC) and the project PBi2(CTM2012e36227), the latter being co-financed by the EuropeanRegional Development Fund (FEDER)

    Seismic Reliability Assessment of Aging Highway Bridge Networks with Field Instrumentation Data and Correlated Failures. II: Application

    Get PDF
    The Bridge Reliability in Networks (BRAN) methodology introduced in the companion paper is applied to evaluate the reliability of part of the highway bridge network in South Carolina, USA, under a selected seismic scenario. The case study demonstrates Bayesian updating of deterioration parameters across bridges after spatial interpolation of data acquired from limited instrumented bridges. The updated deterioration parameters inform aging bridge seismic fragility curves through multidimensional integration of parameterized fragility models, which are utilized to derive bridge failure probabilities. The paper establishes the correlation structure among bridge failures from three information sources to generate realizations of bridge failures for network level reliability assessment by Monte Carlo analysis. Positive correlations improve the reliability of the case study network, also predicted from the network topology. The benefits of the BRAN methodology are highlighted in its applicability to large networks while addressing some of the existing gaps in bridge network reliability studies

    Shear capacity of reinforced concrete corbels using mechanism analysis

    Get PDF
    A mechanism analysis is developed to predict the shear capacity of reinforced concrete corbels. Based on shear failure observed in experimental tests, kinematically admissible failure mechanisms are idealised as an assemblage of two rigid blocks separated by a failure plane of displacement discontinuity. Shear capacity predictions obtained from the developed mechanism analysis are in better agreement with corbel test results of a comprehensive database compiled from the available literature than other existing models for corbels. The developed mechanism model shows that the shear capacity of corbels generally decreases with the increase of shear span-to-depth ratio, increases with the increase of main longitudinal reinforcement up to a certain limit beyond which it remains constant, and decreases with the increase of horizontal applied loads. It also demonstrates that the smaller the shear span-to-overall depth ratio of corbels, the more effective the horizontal shear reinforcement

    Seismic response assessment of architectural non-structural LWS drywall components through experimental tests

    Get PDF
    A research project was conducted at University of Naples “Federico II” over the last few years with the aim to give a contribute to overcome the lack of information on seismic behaviour of architectural non-structural lightweight steel (LWS) drywall components, i.e. indoor partition walls, outdoor façades and suspended continuous ceilings. The tested non-structural components were made of LWS frames sheathed with gypsum-based or cement-based boards. The research activity was organized in three levels: ancilliary tests, component tests and assembly tests. Ancilliary tests were carried out for evaluating the local behaviour of partitions, façades and ceilings. Component tests involved out-of-plane quasi-static monotonic and dynamic identification tests and in-plane quasi-static reversed cyclic tests on partitions. Finally, the dynamic behaviour was investigated through shake table tests on different assemblages of partitions, façades and ceilings. The study demonstrated that the tested architectural non-structural LWS drywall components are able to exhibit a very good seismic behaviour with respect to the damage limit states according to the IDR limits given by Eurocode 8 Part 1. The current paper describes the complete experimental activity within the project
    • …
    corecore