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ABSTRACT 

A mechanism analysis is developed to predict the shear capacity of reinforced concrete corbels. 

Based on shear failure planes observed in experimental tests, kinematically admissible failure 

modes are idealized as an assemblage of two rigid blocks separated by failure surface of 

displacement discontinuity. 
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Shear capacity predictions obtained from the developed mechanism analysis are in better agreement 

with corbel test results of a comprehensive database compiled from the available literature than 

other existing models for corbels. The developed mechanism model shows that the shear capacity of 

corbels generally decreases with the increase of shear span-to-depth ratio, increases with the 

increase of main longitudinal reinforcement up to a certain limit beyond which it remains constant, 

and decreases with the increase of horizontal applied loads. In addition, the smaller the shear span-

to-overall depth ratio of corbels, the more effective the horizontal shear reinforcement. 

Keywords: corbels, shear capacity, upper-bound theorem, shear-friction theory, strut-and-tie model. 

INTRODUCTION 

Reinforced concrete corbels, generally defined as short cantilevers having shear span-to-depth ratios 

less than or equal to 1.0, are commonly used to transfer loads from beams to columns or walls in 

precast concrete construction. Corbels are primarily designed to resist vertical loads and horizontal 

actions owing to restrained shrinkage and creep of the supported beam. Due to their geometric 

proportions, the capacity of reinforced concrete corbels is governed by shear rather than flexure and 

shear deformations are not negligible, similar to deep beams. Reinforced concrete corbels are 

identified as discontinuity regions
1
 where strain distribution is significantly non-linear and 

conventional beam theory would not be applicable. 

Reinforced concrete corbels are generally known to display several modes of failure
2-4

, such as 

anchorage failure or yielding of main longitudinal reinforcement, shear splitting at the interface 

between column and corbel, diagonal splitting or crushing of the concrete strut joining the loading 

point and bottom point of the interface, and local crushing failure under the bearing plate of the 

applied load. Russo et al.
4
, and Yong and Balaguru

5
 also identified failure occurring between the 

interface and diagonal plane joining the loading point and bottom point of the interface as beam-

shear failure, the mode of failure mostly observed in experimental tests
5-8

. Premature failure modes, 
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such as anchorage failure of main longitudinal reinforcement and bearing failure
6
, would be 

prevented by following proper reinforcement detailing as specified in ACI 318-08
9
. However, it is 

not straightforward to evaluate the capacity of corbels owing to beam-shear failure and crushing of 

concrete strut as it involves various parameters such as the amount of main longitudinal and 

horizontal shear reinforcements, shear span-to-depth ratio and amount of horizontal load
5, 7

. 

In the present study, a mechanism analysis to evaluate the shear capacity of corbels is developed 

using upper-bound theorem of concrete plasticity. Based on experimental tests carried out by many 

researchers
5-8, 10

, kinematically admissible failure modes are idealized and studied. The effect of 

different parameters on the shear capacity of corbels is also investigated using the developed 

mechanism analysis, existing empirical equation by Fattuhi
7
, shear-friction model by ACI 318-08

9
, 

simplified strut-and-tie model by Russo et al.
4
, softened strut-and-tie model by Hwang et al.

11
 and 

test results of a comprehensive database compiled from available literature. 

RESEARCH SIGNIFICANCE 

The aim of this paper is to present a mechanism analysis developed from the energy principle for 

evaluating the shear capacity of reinforced concrete corbels to complement the existing strut and tie 

approach based on the equilibrium method. The proposed mechanism technique gives closer 

prediction to test results of 265 corbels than other models available in the literature. The effect of 

various parameters on the shear capacity of corbels is also evaluated using the developed 

mechanism analysis, other existing models and experimental results. 

REVIEW OF EXISTING MODELS 

Currently available theoretical models to evaluate the shear capacity of corbels would be classified 

into three categories: empirical equations
7
 calibrated against test results, formulas

9, 10
 developed 

from shear-friction theory, and strut-and-tie models
4,11,14-16

 including plastic truss models
6
. Existing 

models for estimating the shear capacity of corbels are summarized below. 
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Empirical equation 

Based on extensive test results, Fattuhi
7
 combined different parameters influencing the shear 

capacity nV  of corbels and developed the following formula: 

8765432 )/()/()10()()/()()(
)/(

1

kk

cuy

VNkk

st

kk

ct
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n hdffdafbdkV       (1) 

where b , d  and h  (in mm) = width, effective depth, and overall depth of the interface between 

column and corbel, respectively, a  = shear span measured from the loading point to the interface as 

shown in Fig. 1, ctf  (in MPa) = indirect tensile splitting strength of concrete, cuf  = cube 

compressive strength of concrete (1.23 '

cf , where '

cf = cylinder compressive strength), 











bd

Ast
st = ratio of main longitudinal reinforcement, stA  and yf = area and yield point stress of 

main longitudinal reinforcement, respectively, and V  and N  = vertical and horizontal loads applied 

to corbels, respectively. The values of the constants 1k  to 8k  obtained from regression analysis
7
 of 

test data are 611, 0.7298, 0.3569, -0.8204, 0.5745, -0.1644, -0.0261, -0.1342, respectively. The 

above equation takes no account of the influence of horizontal shear reinforcement. 

Although it is relatively easy to use empirical equations such as Eq. (1), its application to corbels 

having parameters deviated from the range used for calibration is doubtful. In addition, this equation 

may cause overfitting due to the high number of constants used to develop the equation. 

Formula using shear-friction theory 

ACI 318-08
9
 specifies the shear capacity of corbels considering the load transfer capacity of 

horizontal reinforcement by shear friction and flexural yielding of the main longitudinal 

reinforcement at the interface as follows: 

 
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where   = coefficient of friction which is taken as 1.4 for monolithic construction, hA  and yhf  = 

total area and yield strength of horizontal shear reinforcement, and  

    bfNfAdjd cyst

'85.0/5.0  = moment lever arm. 

The above formula based on shear-friction theory neglects the shear transfer capacity of concrete as 

the critical failure section is always assumed at the interface between corbel and column as shown in 

Fig. 1. However, failure of corbels having a very small shear span-to-depth ratio or sufficient 

horizontal shear reinforcement seldom occurs along the interface as pointed out by Hwang et al.
11

 

and Hermansen and Cowan
12

. In addition, ACI 318-08 limits concrete strength of corbels to 

5.27' cf  MPa (3.99 ksi) when the shear capacity of corbels is governed by the second part of Eq. 

(2), which does not allow full utilisation of higher strength concrete. For corbels having shear span 

to depth ratio greater than 1.0, ACI 318-08 recommends the use of strut and tie model described in 

ACI 318-08, Appendix A. 

Strut-and-tie model 

Considering equilibrium, compatibility and constitutive laws of cracked reinforced concrete, Hwang 

et al.
11

 predicted the shear capacity of corbels based on the softened strut-and-tie model shown in 

Fig. 2(a) as follows: 

 tansin hDn FFV            (3) 

where DF  and hF  = compression force in concrete strut and tension force in the horizontal shear 

reinforcement, respectively, 







 

a

jd11tan  = angle of concrete strut to the longitudinal axis of 

corbels as shown in Fig. 2 (a). Hwang et al. used the linear bending theory of reinforced concrete 
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beams with only tensile reinforcement neglecting shear deformations and the non-linear 

distributions of strains and stresses of corbels to estimate the moment lever arm 1jd  as: 

d
k

jd 









3
11           (4) 

where   
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
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2
 = ratio of depth of compression zone to the effective depth at 

the interface, 
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f = equivalent main longitudinal reinforcement ratio, 
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N
A = area 

of main longitudinal reinforcement resisting the applied horizontal force N, 




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



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c

s

E

E
n = modular 

ratio of elasticity, sE  and  MPain  4700 '

cc fE   = elastic moduli of reinforcement and concrete, 

respectively. In Eq. (3), hF  is assumed to be a function of the area hA  and average strain of 

horizontal shear reinforcement, and DF  is dependent on the concrete strut width sw  assumed to be 

equal to kd , angle   and maximum allowable compressive stress max,d  of concrete strut. Hwang 

et al. adopted the softened stress-strain curve of cracked concrete proposed by Zhang and Hsu
13

 to 

estimate max,d  that is depending on the average principal compressive d  and tensile r  strains in 

concrete and a softening coefficient  . 

The compatibility condition considered by Hwang et al. relates the average principal strains to the 

average horizontal h  and vertical v  strains as below: 

vhdr             (5) 

To avoid iterative procedure, Hwang et al. proposed reasonable values for the average horizontal h  

and vertical v  strains and hence, the values of d  and r  can be determined using numerical 

analysis. As a result, the shear capacity of corbels using the softened strut-and-tie model proposed 
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by Hwang et al can be obtained, though several assumptions based on linear elastic beam theory are 

imposed. 

On the other hand, Russo et al.
4
 derived a simple equation using the strut-and-tie model shown in 

Fig. 2(b). In this model, load transfer mechanisms of cracked concrete and horizontal shear 

reinforcement were considered and simplified as below: 

 bdffkV yhhcn 11

' cot65.0cos8.0          (6) 

where   = a nondimensional interpolating function to provide a single expression for softening 

coefficient   given in the softened strut-and-tie model above, 1  = angle of concrete strut to the 

column axis as shown in Fig. 2 (b), which can be obtained from the elastic beam theory and 

trigonometric relations, and 









bd

Ah
h  = ratio of horizontal shear reinforcement. The principal 

tensile strain r  was assumed to be cct Ef /  to obtain directly the softening coefficient  . Russo et 

al. also proposed that   could be approximately expressed as a polynomial of third degree in '

cf . 

Different constants used in Eq. (6) were determined by calibrating the strut-and-tie model against 

243 test results of corbels. 

Other strut and tie models
14-16

 were developed for corbels but they are similar in principle to those 

presented above. Strut-and-tie models provide a systematic load transfer mechanism for estimating 

the shear capacity of corbels. However, they consider only the failure mode due to crushing of 

concrete struts. In addition, several assumptions are imposed for simplification. The width and 

inclination of concrete strut is evaluated from the neutral axis depth of the interface using the 

conventional elastic beam theory that is not applicable to deep corbels where both strains and 

stresses are non linear. In addition, biaxial stresses in compressed concrete strut are chosen 

arbitrarily or calculated from tensile strength of concrete. 
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MECHANISM ANALYSIS 

Failure mechanism of corbels 

Failure planes of corbels commonly occurred along the diagonal plane joining the inner edge of 

loading plate and bottom point of the interface
2, 3

. However, few test specimens exhibited splitting 

cracks stemmed from a point close to the loading plate at failure
2, 3

. Thus, the failure mechanism can 

be idealized as an assemblage of two rigid blocks separated by a yield line representing the failure 

zone along which in-plane displacement discontinuity occurs
17

. Rigid block I undergoes a rotation 

around an instantaneous center (I.C.), while rigid block II is considered to be fixed with the 

supporting column as shown in Fig. 3. I.C. can be located anywhere in the vertical plane of corbel 

and its position identifies the shape of the failure surface. Jensen
18

 proved that the optimal shape of 

the yield line is a hyperbola with orthogonal asymptotes at the I.C. and the yield line reduces to a 

straight line to achieve a stationary value of the total energy dissipation when the I.C. approaches 

infinity. On the other hand, the yield line turns into two straight segments when the I.C. of relative 

rotation lies inside or on a circle whose diameter is the straight yield line joining the inner edge of 

loading plate and bottom point of the interface as shown in Fig. 3 (b). For each location of I.C., an 

upper bound load to the corbel capacity can be established. However, the optimum position of I.C. 

corresponds to the minimum load capacity as explained below. 

Material Modelling 

Concrete is assumed to be a rigid perfectly plastic material obeying the modified Coulomb failure 

criteria
17

 with zero tension cut-off. The effective compressive strength to be used in calculation, 
*

cf , 

is  

'*

cec ff              (7) 
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where e  = effectiveness factor that is introduced to account for the limited ductility of concrete and 

to absorb other shortcomings of applying the plasticity theory to concrete. Although there is no 

unified approach for evaluating the effectiveness factor of concrete, many investigations
19, 20

 clearly 

showed that the effectiveness factor depends on concrete strength and geometrical properties of 

reinforced concrete members. The measure of success of the mechanism analysis presented below 

would depend on the extent that the effectiveness factor is reasonably uniform and predictable 

across the range of corbels considered. In the present study, Nielsen’s model
17

 considering the effect 

of compressive strength of concrete modified by the equation proposed by Bræstrup
20

 for the 

influence of shear span-to-overall depth ratio is adopted for the evaluation of the effectiveness 

factor as given below: 

























h

af c
e 2.01

200
8.0

'

          (8) 

All reinforcement is considered to carry only axial tensile and compressive stresses and its dowel 

action is ignored. Steel reinforcement in both tension and compression is assumed to be a rigid 

perfectly plastic material with yield strength yf . Yielding of steel reinforcements is generally 

achieved by utilizing some sort of a mechanical anchorage at the end of the corbel. Strain hardening 

of steel reinforcement is ignored as it requires excessive wide cracks in concrete beyond the failure 

mechanism considered in the present analysis. 

Work Equation 

The upper-bound theorem is based on the energy principle, by equating the total internal energy, 

IW , to the external work done, EW . The total internal energy mainly depends on the position of the 

I.C. and the amount of internal stresses in both concrete along the yield line and reinforcement 
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crossing the yield line. The energy  
lcW  dissipated in concrete per unit length of the yield line is 

written in the following general form
17

: 

   


sin1
2

'

 b
f

W ce

lc          (9) 

where  = relative displacement rate of rigid block I and  = angle between the relative 

displacement at the midpoint of the chord and yield line chord as shown in Fig. 3. The relative 

displacement rate   can be expressed as r , where r = distance between the midpoint of the 

chord of the yield line and the I.C. and  = rotational displacement of rigid block I. For a yield line 

with two straight segments as shown in Fig. 3 (b), it should be noted that the two segments intersect 

at the I.C. of relative rotation, indicating that one segment of the yield line is under compression and 

the other is in tension due to the relative rotation between the two blocks. Therefore, one segment of 

the yield line is under tensile stresses with pure separation (
2


  ), and it can not contribute to the 

internal energy distribution due to the assumption of zero tensile concrete strength. If the origin of 

global coordinates is set to be at the bottom point of the interface as shown in Fig. 3, the total 

internal energy cW  dissipated in concrete along the hyperbolic or two straight yield line is
18

: 

)'(
2

'

OFb
f

W ce
c 


           (10) 

where  'OF  is a function of the position of the I.C. and, consequently, the shape of the yield line; 

Eqs. 11(a) and 11(b) below gives the value of  'OF  for the hyperbolic and two straight segments 

yield lines respectively
18

. 

     sin/sin1' hrOF    for   sin2/hr     (11a) 

   22
' icic YXOF     for   sin2/hr     (11b) 

where   exh /tan 1 = angle of the diagonal line joining the inner edge of the loading plate and 

bottom point of the interface to the longitudinal axis of corbels and ex  = clear shear span measured 



 

11 

from inner edge of the loading plate to interface. In Eq. (11 a), both r  and   depend on the 

position of the I.C. Hence, the energy dissipated in concrete is a function of horizontal icX  and 

vertical icY  coordinates of the I.C. 

The relative displacement of reinforcement s  can be expressed as sr  as shown in Fig. 4. 

Therefore the energy sW  dissipated in main longitudinal and web reinforcement crossing the yield 

line is calculated from: 





n

i

isisiyiss rfAW
1

)cos()()()(         (12) 

where n = number of reinforcing bars crossing the yield line, isA )(  and iyf )( = area and yield 

strength of reinforcing bar i  crossing the yield line, respectively, isr )( = distance between the 

intersection point of reinforcing bar i  with the yield line and the I.C. and is )( = angle between the 

relative displacement is )(  and the reinforcing bar i  crossing the yield line. In case of horizontal 

reinforcement,  
isiicis ryY /)cos(  , where iy  = vertical coordinate of the intersection point of 

reinforcing bar i  and the yield line as shown in Fig. 4. 

The external work EW  done by the vertical load nV  and horizontal load N  on rigid block I is (see 

Fig. 3): 

icicnE YhNXaVW           (13) 

In Eq. (13) above, the horizontal load N is assumed to act at the level of the corbel top surface. 

However, this could be easily adjusted to other levels as the case in some experiments
5, 7

. The 

horizontal load N applied to corbels can be normalized with respect to the yielding force, Ast fy, of 

the main longitudinal reinforcement to simplify the calculation of the vertical coordinate icY  of the 

I.C. Equating the total internal energy dissipated in concrete and reinforcement to the external work 

done, the shear capacity, nV , can be obtained as below: 
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'

'
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   (14) 

where st = 
'

c

yst

bhf

fA
  = main longitudinal reinforcement index, 
















yst fA

N
  = ratio of horizontal load 

to the yield force of the main longitudinal reinforcement, and is )( = 
'

)()(

c

iyis

bhf

fA
= web 

reinforcement index for each individual reinforcing bar i  crossing the yield line. Eq. (14) implies 

that the horizontal load is one of various parameters influencing the vertical coordinate icY  of the 

I.C. 

Solution procedure  

According to the upper-bound theorem, the collapse occurs at the least strength. The shear capacity 

of corbels is implicitly expressed as a function of the position of the I.C., ( icic YX , ), as given by Eq. 

(14). The horizontal icX  and vertical icY  coordinates of the I.C. is repeatedly tuned until the 

minimum shear capacity is obtained. For each position of the I.C., the shape of the yield line can be 

identified, the energy dissipated in concrete along the yield line can be estimated using Eqs. 10 and 

11(a) or Eqs. 10 and 11(b) for the hyperbolic and two straight segments yield lines, respectively and 

finally the corresponding shear capacity is calculated using Eq. (14). The process of adjusting the 

position of I.C. is achieved by reliable numerical optimization procedures provided in MATLAB 

software. However, if such routines are not available, a simple algorithm has to be developed to 

survey a wide range of locations of I.C. to achieve the minimum load capacity of corbel. 

Ashour
22

 developed a mechanism analysis for reinforced concrete deep beams and showed that the 

position of the I.C. of relative rotation commonly depends on the amount of main longitudinal 

reinforcement and shear span-to-overall depth ratio. The two straight yield lines clearly indicate 

yielding and participation of the main longitudinal top reinforcement of corbels, whereas in case of 
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the hyperbolic yield line, the I.C. is more likely to be located along the main longitudinal top 

reinforcements and consequently, these reinforcements do not contribute to the internal energy 

dissipation.  For the case of corbels, the position of the I.C. would also be influenced by the amount 

of the applied horizontal force. 

When shear reinforcement is not provided in concrete corbels, the determination of the minimum 

shear capacity could be achieved by considering the two differential equations, 0




ic

n

X

V
 and 

0




ic

n

Y

V
. In addition, for corbels with sufficiently strong main longitudinal reinforcement or 

subjected to high horizontal load N, the vertical coordinate icY  of the I.C. would be located at the 

level of main longitudinal reinforcement
22

 or horizontal applied load. As a result, the optimization 

process is further simplified as the shear capacity turns to be a function of only icX . A numerical 

example explaining the solution procedure of shear capacity calculation of specimen PA 2 tested by 

Foster et al.
8
 using the mechanism approach is presented in Appendix A. 

COMPARISONS AND DISCUSSIONS 

Database of reinforced concrete corbels 

Test results of 265 reinforced concrete corbels were compiled from different experimental 

investigations carried out by Abdul-Wahab
23

, Campione et al.
6
, Chakrabarti et al.

24
, Fattuhi et al.

7, 

25-29
, Foster et al.

8
 Kriz and Raths

3
, Mattock et al.

30
, and Yong and Balaguru

5
, and other test results 

originally collected by Kriz and Raths
3
. All corbels were reported to fail in shear due to a major 

diagonal crack within the corbel shear span. The test specimens were made of concrete having a 

relatively low compressive strength of 15.2 MPa (2.2 ksi) and very high compressive strength of 

105 MPa (15.2 ksi). The shear span-to-overall depth ratio of corbels ranged from 0.1 to 1.1. The 
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main longitudinal reinforcement index st  varied between 0.023 and 0.487 whereas the horizontal 

load to yield force of main longitudinal reinforcement ratio 















yst fA

N
  ranged from 0 to 1.0. Some 

test specimens had no shear reinforcement whereas others were reinforced with horizontal shear 

reinforcement only. However, all test specimens had no vertical shear reinforcement. 

Comparison of shear load capacity 

Table 1 gives the mean mcs , , standard deviation scs , , and coefficient of variation vcs ,  of the ratio 

between measured and predicted shear capacities, .Pr. )/()( enExpncs VV , of corbels with different 

horizontal shear reinforcement and horizontal load. The distribution of cs  of the total specimens in 

the database against the shear span-to-overall depth ratio ha /  is also shown in Fig. 5; Fig. 5 (a) for 

the empirical equation (Eq. (1)) proposed by Fattuhi, Fig. 5 (b) for the ACI 318-08 equation (Eq. 

(2)) based on shear-friction theory, Fig. 5 (c) for the simplified softened strut-and-tie model 

proposed by Hwang et al., Fig. 5 (d) for the strut-and-tie model by Russo et al., and Fig. 5 (e) for the 

current mechanism analysis. Fattuhi’s equation largely overestimates the shear capacity of corbels 

without both horizontal shear reinforcement and horizontal load when ha /  ≤0.3, whereas 

underestimates that of corbels with horizontal shear reinforcement and without horizontal load 

regardless of ha / , as the contribution of horizontal shear reinforcement to shear transfer capacity is 

not included in this method. The largest standard deviation and coefficient of variation of all models 

appears in the equations specified in ACI 318-08 based on the shear-friction theory. In particular, 

the ACI 318-08 equations are unconservative for corbels without horizontal shear reinforcement. 

The softened strut-and-tie model proposed by Hwang et al. generally underestimates the shear 

capacity of corbels, especially those without both horizontal shear reinforcement and horizontal load. 

Russo et al.’s strut-and-tie model shows reasonable agreement with test results, but high deviation 
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exhibited by few specimens without horizontal shear reinforcement or with horizontal load as 

shown in Fig. 5 (d). On the other hand, predictions obtained from the developed mechanism 

analysis are in better agreement with test results than other models regardless of shear span-to-

overall depth ratio, horizontal shear reinforcement and horizontal load, as given in Table 1. 

FURTHER EXPERIMENTAL VERIFICATION 

The influence of various parameters on the shear capacity of corbels is evaluated using the empirical 

equations proposed by Fattuhi, the equation specified in ACI 318-08 based on shear-friction theory 

(SFT), strut-and-tie models (STM) developed by Hwang et al. and Russo et al., the current 

mechanism analysis, and appropriate experimental results in the database. In this parametric study, 

the width and overall depth of section in the interface between columns and corbels, and 

compressive strength of concrete are selected to be fixed at 150 mm (5.9 in.), 600 mm (23.6 in.), 

and 30 MPa (4.35 ksi), respectively. The effective depth of section and width of loading plate are 

also assumed to be 0.9 h  and 0.1 h , respectively. In addition, the shear capacity of corbels is 

normalized by '

cbhf . In few cases, when a value of corbel parameter used in the parametric study is 

not matching that in the database, a range of such parameter is extracted from the database and 

presented in the following figures to validate the trend predicted by different theoretical models. 

Shear span-to-overall depth ratio 

Fig. 6 shows the influence of the shear span to depth ratio ha /  on the normalized shear capacity 

'/ cn bhfV  of corbels without both horizontal shear reinforcement and horizontal load. Calculations 

obtained from ACI 318-08 remain constant when ha /  ≤0.6 as the shear-friction theory considers 

only the shear transfer of reinforcement crossing the failure plane at the interface, independent of 

ha / . On the other hand, normalized shear capacities of corbels obtained from experimental results, 

empirical equations, strut-and-tie models and mechanism analysis generally decrease with the 
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increase of ha / . However, the strut-and-tie models gives higher predictions than mechanism 

analysis, empirical equation, and experimental results when ha / ≥0.5, especially for 05.0st . In 

addition, most models, but the mechanism approach and the empirical equation by Fattuhi, 

underestimate the normalized shear capacity for low shear span to depth ratio ( ha /  < 0.3), 

especially for st  = 0.1. 

Main longitudinal reinforcement 

The influence of the main longitudinal reinforcement index st  on the normalized shear capacity 

'/ cn bhfV  of corbels without horizontal shear reinforcement and horizontal load for two different 

shear span-to-overall depth ratios is presented in Fig. 7. The prediction obtained from the 

mechanism analysis increases with the increase of st  up to a certain limit beyond which the 

normalized shear capacity remains constant, agreeing with the test results. When the main 

longitudinal reinforcement reaches this limit, it becomes strong enough not to yield and hence the 

I.C. lies at the level of the main longitudinal reinforcement. In this case, the main longitudinal 

reinforcement would have no contribution to the shear capacity of corbels as depicted in Fig. 7. The 

shear capacity predicted from ACI 318-08 is governed by the upper limit specified by Eq. (2) with 

the increase of st . For the mechanism analysis and ACI 318-08, the limit to the st  depends on 

ha / , indicating that the value of st  to achieve the peak point decreases with the decrease of ha / . 

On the other hand, the prediction obtained from empirical equation, and strut-and-tie models 

increases with the increase of st  without any limits, exhibiting large overestimation of test results 

for large st , especially for ha / =0.9. 
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Horizontal load 

Fig. 8 shows the effect of the ratio   of the applied horizontal load to yield force of main 

longitudinal reinforcement on normalized shear capacity '/ cn bhfV  of corbels without horizontal 

shear reinforcement for two different shear span to overall depth ratios ha / . The normalized shear 

capacity of corbels steadily decreases with the increase of   as predicted by all theoretical models 

and experimental results. However, the predictions obtained from the mechanism analysis are closer 

to the experimental results than other models. In particular, strut-and-tie models largely 

overestimate the effect of   on the normalised shear capacity for ha /  = 0.5. 

Horizontal shear reinforcement 

The effect of horizontal shear reinforcement index 














'

c

yhh

h
bhf

fA
  on the normalized shear capacity 

'/ cn bhfV  of corbels without horizontal load is shown in Fig. 9. The normalized shear capacity of 

corbels increases with the increase of h  as predicted by the mechanism analysis and strut-and-tie 

models and also supported by the limited experimental results available. The effect of horizontal 

shear reinforcement on the shear capacity of corbels is more prominent in low ha / , namely, a 

higher increasing rate is developed in corbels with ha /  of 0.3 than corbels with ha /  of 0.9. 

However, prediction obtained from Fattuhi’s equations does not account for h , and the ACI 318-08 

prediction is also independent of h  for ha /  = 0.9 and slightly increases with the increase of h  for 

ha / =0.3. 
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CONCLUSIONS 

A mechanism analysis based on upper-bound theorem is proposed to predict the shear capacity of 

reinforced concrete corbels. The effect of different parameters on the shear capacity of corbels is 

also investigated using the developed mechanism analysis, empirical equations proposed by Fattuhi, 

ACI 318-08 based on shear-friction theory, strut-and-tie models developed by Hwang et al. and 

Russo et al., and test results in a comprehensive database collected from the available literature. The 

following conclusions may be drawn: 

1. Compared with the existing models, predictions obtained from the developed mechanism 

analysis are in better agreement with test results regardless of shear span-to-overall depth 

ratio, horizontal shear reinforcement and horizontal load. 

2. The largest standard deviation and coefficient of variation of the ratio between measured and 

predicted shear capacities of corbels are shown by ACI 318-08. In addition, ACI 318-08 is 

unconservative for corbels having shear span-to-overall depth ratio more than 0.5. 

3. The normalized shear capacities '/ cn bhfV  of corbels obtained from experimental results, 

empirical equations, strut-and-tie models and mechanism analysis generally decrease with 

the increase of shear span-to-overall depth ratio. 

4. The shear capacity obtained from the mechanism analysis increases with the increase of the 

main longitudinal reinforcement index up to a certain value beyond which it remains 

constant, agreeing with test results. 

5. The normalized shear capacity '/ cn bhfV  of corbels deceases with the increase of the 

horizontal load; the decreasing rate obtained from the mechanism analysis is similar to that 

of test results. 

6. The effect of horizontal shear reinforcement on shear capacity is more prominent in corbels 

having small shear span-to-overall depth ratios. 
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Appendix A: Numerical Example of Mechanism Analysis 

The following numerical example presents the shear capacity calculation of specimen PA 2 tested 

by Foster et al.
8
 using the mechanism approach. The material and geometrical properties of the 

specimen PA 2 are as follows: b =150 mm, h =600 mm, '

cf =53 MPa, d =500 mm, a =300 mm, 

ex 250 mm, stA =1884 mm
2
 (Y20), yf =450 MPa, hA = 157 mm

2
 (R10) yhf =360 MPa, and 
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hs =85 mm. There was no horizontal load applied to the specimen. The measured shear capacity nV  

was 800 kN. The following steps summarise the procedure: 

 Calculate the effectiveness factor for concrete e  using Eq. (8); e =0.4815. 

 Calculate the main longitudinal reinforcement index st = 
'

c

yst

bhf

fA
 and the web reinforcement 

index  
'

c

yhh

is
bhf

fA
  for each individual bar crossing the yield line; st =0.1777,  

is =0.0118. 

 Determine the angle   exh /tan 1  of the diagonal line joining the inner edge of the loading 

plate and bottom point of the interface to the longitudinal axis of the corbel;   = 67.38deg. 

 Different positions of the I.C.  icic YX ,  have to be examined using the MATLAB software 

optimizer
21

. For each position, the shape of the yield line has to be identified using Eq. 11. The 

internal energy dissipated in concrete has to be estimated using Eqs. 10 and 11. For example, for 

icX =150mm  and icY =150mm , r  152 mm and  / 2sinh   = 325 mm, (  sin2/hr  ), the 

yield line is then identified to be two straight segments and  'OF  is then obtained from Eq. 

(11b),  'OF = 45000 mm
2
; however for icX = 400mm  and icY = 500mm , r  340 mm 

(  sin2/hr  ), the hyperbolic yield line occurred and  'OF  is then obtained from Eq. (11 a) 

as  'OF =32273 mm
2
. 

 The minimum shear capacity nV  of 784 kN is achieved when icX =1950 mm and icY =500 mm 

(i.e. along the main longitudinal reinforcement). This indicates that the main longitudinal 

reinforcement does not yield at failure. The predicted shear capacity is 98% of the measured 

shear failure load. 

 Table A.1 compares the shear capacity and location of I.C. of corbels PA1 and PA2 tested by 

Foster et al.
8
 as predicted by the mechanism analysis. Corbel PA1 was a control specimen having 

the same geometrical dimensions and concrete strength as corbel PA2, but no secondary 
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horizontal shear reinforcement. The optimum location of I.C. is moved to icX =496 mm and 

icY =500 mm and the predicted shear capacity is reduced to 596 kN for corbel PA1 (108% of the 

measured shear capacity). Table A.1 also indicates that a 32% shear capacity increase owing to 

the use of secondary horizontal shear reinforcement of R10 at spacing of 85mm is predicted 

using the mechanism analysis. 

 (Note: 1 MPa = 145 psi; 1 kN = 0.2248 kips; 1 mm = 0.039 in.) 
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Table 1-Comparison of experimental and predicted shear capacities of corbels in the database using different methods. 

 Fattuhi 

(Empirical equation) 

ACI 318-05 

(Shear-friction theory) 

Hwang et al. 

(Softened strut-and-tie model) 

Russo et al. 

(Strut-and-tie model) 

This study 

(Mechanism analysis) 

W/O W/H W/N W/HN Total W/O W/H W/N W/HN Total W/O W/H W/N W/HN Total W/O W/H W/N W/HN Total W/O W/H W/N W/HN Total 

mcs ,  0.83 1.23 0.86 0.50 0.86 1.43 1.67 1.07 1.32 1.41 1.16 1.17 1.02 1.07 1.14 1.0 1.02 0.89 0.89 0.98 1.03 0.96 1.05 0.96 1.01 

scs ,  0.26 0.24 0.21 0.15 0.31 0.57 0.48 0.24 0.35 0.53 0.27 0.15 0.37 0.26 0.27 0.24 0.19 0.32 0.25 0.25 0.22 0.18 0.22 0.19 0.21 

vcs ,  0.31 0.19 0.25 0.29 0.36 0.4 0.28 0.23 0.27 0.34 0.23 0.13 0.36 0.25 0.24 0.24 0.18 0.36 0.28 0.25 0.21 0.19 0.21 0.19 0.21 

Note : mcs , , scs , , and vcs ,  indicate the mean, standard deviation and coefficient of variation of .Pr. )/()( enExpncs VV , respectively. 

W/O, W/H, W/N, and W/HN refer to corbels without both horizontal shear reinforcement and horizontal load, with horizontal shear reinforcement and without horizontal 

load, without horizontal shear reinforcement and with horizontal load, and with both horizontal shear reinforcement and horizontal load, respectively. 
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Table A.1 Comparisons between predictions of corbels PA1 and PA2 

Corbel Xic 

(mm) 

Yic 

(mm) 

Measured shear 

capacity (kN) 

Predicted shear 

capacity (kN) 

% Ratio between predicted and 

measured 

PA1 496 500 550 596 108 

PA2 1950 500 800 784 98 
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Fig. 1- Potential failure planes of corbels considered in existing models. 
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Fig. 2- Typical strut-and-tie models of corbels 
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Fig. 3- Idealized failure mechanism of corbels. 
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Fig. 4- Reinforcing bar crossing yield line. 
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(b) ACI 318-05 
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(c) Softened strut-and-tie model by Hwang et al. 
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(d) Strut-and-tie model by Russo et al. 
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(e) Mechanism analysis 

Fig. 5-Comparisons of measured and predicted shear capacities. 
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Fig. 6- Influence of ha /  on shear capacity of corbels. 
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Fig. 7- Influence of st  on shear capacity of corbels. 
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Fig. 8- Influence of   on shear capacity of corbels ( 12.0st , 0h ). 
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Fig. 9- Influence of h  on shear capacity of corbels ( 1.0st , 0 ). 


