68 research outputs found

    Alterations of the Innate Immune System in Susceptibility and Resilience After Social Defeat Stress

    Get PDF
    Dysregulation of innate immune responses has frequently been reported in stress-associated psychiatric disorders such as major depression. In mice, enhanced circulating cytokine levels as well as altered innate immune cell numbers have been found after stress exposure. In addition, stress-induced recruitment of peripheral monocytes to the brain has been shown to promote anxiety-like behavior. However, it is yet unclear whether specific differences in the innate immune system are associated with stress susceptibility or resilience in mice. Utilizing chronic social defeat, a model of depression and stress vulnerability, we characterized peripheral and brain-invading myeloid cells in stress-susceptible and resilient animals. In all defeated animals, we found reduced percentages of CD11c+ dendritic cells (DCs) by flow cytometry in the spleen when compared to non-defeated controls. Exclusively in susceptible mice conventional DCs of the spleen showed up-regulated expression of MHC class II and co-stimulatory CD80 molecules pointing toward an enhanced maturation phenotype of these cells. Susceptible, but not resilient animals further exhibited an increase in inflammatory Ly6Chi monocytes and higher numbers of spleen-derived CD11b+ cells that produced the proinflammatory cytokine tumor necrosis factor (TNF) upon lipopolysaccharide (LPS) stimulation. Increased percentages of peripheral CD45hi CD11b+ cells immigrated into the brain of defeated mice, regardless of resilience or susceptibility. However, cellular infiltrates in the brain of susceptible mice contained higher percentages of CC chemokine receptor 2 (CCR2+) Ly6Chi monocytes representing an inflammatory phenotype. Thus, we defined specific stress-related immune signatures involving conventional DCs and inflammatory Ly6Chi monocytes in susceptible and resilient mice. Together, our findings suggest an impact of the innate immune system in vulnerability to stress-related disorders such as major depression

    Do multiple experimenters improve the reproducibility of animal studies?

    Get PDF
    The credibility of scientific research has been seriously questioned by the widely claimed "reproducibility crisis". In light of this crisis, there is a growing awareness that the rigorous standardisation of experimental conditions may contribute to poor reproducibility of animal studies. Instead, systematic heterogenisation has been proposed as a tool to enhance reproducibility, but a real-life test across multiple independent laboratories is still pending. The aim of this study was therefore to test whether heterogenisation of experimental conditions by using multiple experimenters improves the reproducibility of research findings compared to standardised conditions with only one experimenter. To this end, we replicated the same animal experiment in 3 independent laboratories, each employing both a heterogenised and a standardised design. Whereas in the standardised design, all animals were tested by a single experimenter; in the heterogenised design, 3 different experimenters were involved in testing the animals. In contrast to our expectation, the inclusion of multiple experimenters in the heterogenised design did not improve the reproducibility of the results across the 3 laboratories. Interestingly, however, a variance component analysis indicated that the variation introduced by the different experimenters was not as high as the variation introduced by the laboratories, probably explaining why this heterogenisation strategy did not bring the anticipated success. Even more interestingly, for the majority of outcome measures, the remaining residual variation was identified as an important source of variance accounting for 41% (CI95 [34%, 49%]) to 72% (CI95 [58%, 88%]) of the observed total variance. Despite some uncertainty surrounding the estimated numbers, these findings argue for systematically including biological variation rather than eliminating it in animal studies and call for future research on effective improvement strategies

    Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system

    Get PDF
    Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way

    Alterations of the Innate Immune System in Susceptibility and Resilience After Social Defeat Stress

    No full text
    Dysregulation of innate immune responses has frequently been reported in stressassociated psychiatric disorders such as major depression. In mice, enhanced circulating cytokine levels as well as altered innate immune cell numbers have been found after stress exposure. In addition, stress-induced recruitment of peripheral monocytes to the brain has been shown to promote anxiety-like behavior. However, it is yet unclear whether specific differences in the innate immune system are associated with stress susceptibility or resilience in mice. Utilizing chronic social defeat, a model of depression and stress vulnerability, we characterized peripheral and brain-invading myeloid cells in stress-susceptible and resilient animals. In all defeated animals, we found reduced percentages of CD11cC dendritic cells (DCs) by flow cytometry in the spleen when compared to non-defeated controls. Exclusively in susceptible mice conventional DCs of the spleen showed up-regulated expression of MHC class II and co-stimulatory CD80 molecules pointing toward an enhanced maturation phenotype of these cells. Susceptible, but not resilient animals further exhibited an increase in inflammatory Ly6Chi monocytes and higher numbers of spleen-derived CD11bC cells that produced the proinflammatory cytokine tumor necrosis factor (TNF) upon lipopolysaccharide (LPS) stimulation. Increased percentages of peripheral CD45hi CD11bC cells immigrated into the brain of defeated mice, regardless of resilience or susceptibility. However, cellular infiltrates in the brain of susceptible mice contained higher percentages of CC chemokine receptor 2 (CCR2C) Ly6Chi monocytes representing an inflammatory phenotype. Thus, we defined specific stress-related immune signatures involving conventional DCs and inflammatory Ly6Chi monocytes in susceptible and resilient mice. Together, our findings suggest an impact of the innate immune system in vulnerability to stress-related disorders such as major depression

    Effect of Acute Stressor and Serotonin Transporter Genotype on Amygdala First Wave Transcriptome in Mice

    Get PDF
    The most prominent brain region evaluating the significance of external stimuli immediately after their onset is the amygdala. Stimuli evaluated as being stressful actuate a number of physiological processes as an immediate stress response. Variation in the serotonin transporter gene has been associated with increased anxiety- and depression-like behavior, altered stress reactivity and adaptation, and pathophysiology of stress-related disorders. In this study the instant reactions to an acute stressor were measured in a serotonin transporter knockout mouse model. Mice lacking the serotonin transporter were verified to be more anxious than their wild-type conspecifics. Genome-wide gene expression changes in the amygdala were measured after the mice were subjected to control condition or to an acute stressor of one minute exposure to water. The dissection of amygdalae and stabilization of RNA was conducted within nine minutes after the onset of the stressor. This extremely short protocol allowed for analysis of first wave primary response genes, typically induced within five to ten minutes of stimulation, and was performed using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays. RNA profiling revealed a largely new set of differentially expressed primary response genes between the conditions acute stress and control that differed distinctly between wild-type and knockout mice. Consequently, functional categorization and pathway analysis indicated genes related to neuroplasticity and adaptation in wild-types whereas knockouts were characterized by impaired plasticity and genes more related to chronic stress and pathophysiology. Our study therefore disclosed different coping styles dependent on serotonin transporter genotype even directly after the onset of stress and accentuates the role of the serotonergic system in processing stressors and threat in the amygdala. Moreover, several of the first wave primary response genes that we found might provide promising targets for future therapeutic interventions of stress-related disorders also in humans
    • …
    corecore