193 research outputs found

    Infant Sleep Problems and Childhood Overweight: Effects of Three Definitions of Sleep Problems

    Get PDF
    Sleep problems have been defined using a variety of definitions. No study has assessed the longitudinal association between infant sleep problems and childhood overweight or obesity using existing definitions of sleep problems. This study used longitudinal data (n=895) from the multi-site Study of Early Child Care and Youth Development (SECCYD) to investigate the effects of infant sleep problems on childhood weight status in Grade 6. Infants with sleep problems in Phase I (1991) and with complete data through Phase III (2004) of SECCYD were included. Sleep problems were assessed using maternal reports of night wakings and duration of a waking episode. Sleep problems were defined using Richman (1981), Lozoff et al. (1985), and Zuckerman et al. (1987) definitions. Multinomial logistic regression was used to examine the association between sleep problems during infancy and childhood weight status in Grade 6 while controlling for birth weight, race, sex, breastfeeding, maternal poverty, family structure, and maternal education. After adjusting for all covariates, children with a history of sleep problems were found to be overweight in Grade 6 using Zukerman et al. (Odds ratio (OR)=1.68; 95% confidence interval (CI): 1.11–2.55) and Richman (OR=1.76; 95% CI: 1.05–2.97) definitions, but not using Lozoff et al. definition. Infant sleep problems were not found to be associated with being obese. The study found differential effects of infant sleep problems on childhood overweight in Grade 6 per different definitions of sleep problems. Findings highlight the need to construct a single definition of infant sleep problems

    American Society for Parenteral and Enteral Nutrition Guidelines for the Selection and Care of Central Venous Access Devices for Adult Home Parenteral Nutrition Administration

    Full text link
    This document represents the American Society for Parenteral and Enteral Nutrition (ASPEN) clinical guidelines to describe best practices in the selection and care of central venous access devices (CVADs) for the infusion of home parenteral nutrition (HPN) admixtures in adult patients. The guidelines targeted adults >18 years of age in which the intervention or exposure had to include HPN that was administered via a CVAD. Case studies, non‐English studies, or studies of CVAD no longer available in the United States were excluded. In total, 564 abstract citations, 350 from Medline and 214 from PubMed/non‐MEDLINE databases, were scanned for relevance. Of the 564 citations, 13 studies addressed at least 1 of the 6 guideline‐related questions, and none of the studies were prospective and randomized. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) criteria were used to adjust the evidence grade based on assessment of the quality of study design and execution. Recommendations for the CVAD type, composition, or number of lumens to minimize infectious or mechanical complications are based on a limited number of studies and expert opinion of the authors, all very experienced in home infusion therapy. No studies were found that compared best solutions for routine flushing of lumens (eg, heparin versus saline) or for maintaining catheters in situ while treating CVAD mechanical or infectious complications. It is clear that studies to answer these questions are very limited, and further research is needed. These clinical guidelines were approved by the ASPEN Board of Directors.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147811/1/jpen1455_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147811/2/jpen1455.pd

    Time to revisit the passive overconsumption hypothesis?:Humans show sensitivity to calories in energy-rich meals

    Get PDF
    BACKGROUND: A possible driver of obesity is insensitivity (passive overconsumption) to food energy density (ED, kcal/g); however, it is unclear whether this insensitivity applies to all meals. OBJECTIVES: We assessed the influence of ED on energy intake (kcal) across a broad and continuous range of EDs comprised of noncovertly manipulated, real-world meals. We also allowed for the possibility that the association between energy intake and ED is nonlinear. METHODS: We completed a secondary analysis of 1519 meals which occurred in a controlled environment as part of a study conducted by Hall and colleagues to assess the effects of food ultra-processing on energy intake. To establish the generalizability of the findings, the analyses were repeated in 32,162 meals collected from free-living humans using data from the UK National Diet and Nutrition Survey (NDNS). Segmented regressions were performed to establish ED “breakpoints” at which the association between consumed meal ED and mean centered meal caloric intake (kcal) changed. RESULTS: Significant breakpoints were found in both the Hall et al. data set (1.41 kcal/g) and the NDNS data set (1.75 and 2.94 kcal/g). Centered meal caloric intake did not increase linearly with consumed meal ED, and this pattern was captured by a 2-component (“volume” and “calorie content” [biologically derived from the sensing of fat, carbohydrate, and protein]) model of physical meal size (g), in which volume is the dominant signal with lower energy-dense foods and calorie content is the dominant signal with higher energy-dense foods. CONCLUSIONS: These analyses reveal that, on some level, humans are sensitive to the energy content of meals and adjust meal size to minimize the acute aversive effects of overconsumption. Future research should consider the relative importance of volume and calorie-content signals, and how individual differences impact everyday dietary behavior and energy balance

    Quantitative Proteomic and Metabolomic Profiling Reveals Altered Mitochondrial Metabolism and Folate Biosynthesis Pathways in the Aging Drosophila Eye

    Get PDF
    Aging is associated with increased risk of ocular disease, suggesting that age-associated molecular changes in the eye increase its vulnerability to damage. Although there are common pathways involved in aging at an organismal level, different tissues and cell types exhibit specific changes in gene expression with advanced age. Drosophila melanogaster is an established model system for studying aging and neurodegenerative disease that also provides a valuable model for studying age-associated ocular disease. Flies, like humans, exhibit decreased visual function and increased risk of retinal degeneration with age. Here, we profiled the aging proteome and metabolome of the Drosophila eye and compared these data with age-associated transcriptomic changes from both eyes and photoreceptors to identify alterations in pathways that could lead to age-related phenotypes in the eye. Of note, the proteomic and metabolomic changes observed in the aging eye are distinct from those observed in the head or whole fly, suggesting that tissue-specific changes in protein abundance and metabolism occur in the aging fly. Our integration of the proteomic, metabolomic, and transcriptomic data reveals that changes in metabolism, potentially due to decreases in availability of B vitamins, together with chronic activation of the immune response, may underpin many of the events observed in the aging Drosophila eye. We propose that targeting these pathways in the genetically tractable Drosophila system may help to identify potential neuroprotective approaches for neurodegenerative and age-related ocular diseases. Data are available via ProteomeXchange with identifier PXD027090

    Quantitative Proteomic and Metabolomic Profiling Reveals Altered Mitochondrial Metabolism and Folate Biosynthesis Pathways in the Aging Drosophila Eye

    Get PDF
    Aging is associated with increased risk of ocular disease, suggesting that age-associated molecular changes in the eye increase its vulnerability to damage. Although there are common pathways involved in aging at an organismal level, different tissues and cell types exhibit specific changes in gene expression with advanced age. Drosophila melanogaster is an established model system for studying aging and neurodegenerative disease that also provides a valuable model for studying age-associated ocular disease. Flies, like humans, exhibit decreased visual function and increased risk of retinal degeneration with age. Here, we profiled the aging proteome and metabolome of the Drosophila eye and compared these data with age-associated transcriptomic changes from both eyes and photoreceptors to identify alterations in pathways that could lead to age-related phenotypes in the eye. Of note, the proteomic and metabolomic changes observed in the aging eye are distinct from those observed in the head or whole fly, suggesting that tissue-specific changes in protein abundance and metabolism occur in the aging fly. Our integration of the proteomic, metabolomic, and transcriptomic data reveals that changes in metabolism, potentially due to decreases in availability of B vitamins, together with chronic activation of the immune response, may underpin many of the events observed in the aging Drosophila eye. We propose that targeting these pathways in the genetically tractable Drosophila system may help to identify potential neuroprotective approaches for neurodegenerative and age-related ocular diseases

    Return of individual research results from genomic research: A systematic review of stakeholder perspectives.

    Get PDF
    Funder: Franca FundFunder: Canada Research Chair in Law and MedicineFunder: Canada Institute of Health ResearchFunder: Genome QuebecFunder: Genome CanadaFunder: Can-SHARE ConnectFunder: CIHRDespite the plethora of empirical studies conducted to date, debate continues about whether and to what extent results should be returned to participants of genomic research. We aimed to systematically review the empirical literature exploring stakeholders' perspectives on return of individual research results (IRR) from genomic research. We examined preferences for receiving or willingness to return IRR, and experiences with either receiving or returning them. The systematic searches were conducted across five major databases in August 2018 and repeated in April 2020, and included studies reporting findings from primary research regardless of method (quantitative, qualitative, mixed). Articles that related to the clinical setting were excluded. Our search identified 221 articles that met our search criteria. This included 118 quantitative, 69 qualitative and 34 mixed methods studies. These articles included a total number of 118,874 stakeholders with research participants (85,270/72%) and members of the general public (40,967/35%) being the largest groups represented. The articles spanned at least 22 different countries with most (144/65%) being from the USA. Most (76%) discussed clinical research projects, rather than biobanks. More than half (58%) gauged views that were hypothetical. We found overwhelming evidence of high interest in return of IRR from potential and actual genomic research participants. There is also a general willingness to provide such results by researchers and health professionals, although they tend to adopt a more cautious stance. While all results are desired to some degree, those that have the potential to change clinical management are generally prioritized by all stakeholders. Professional stakeholders appear more willing to return results that are reliable and clinically relevant than those that are less reliable and lack clinical relevance. The lack of evidence for significant enduring psychological harm and the clear benefits to some research participants suggest that researchers should be returning actionable IRRs to participants

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Organophosphorus Pesticide Exposure at 17 Weeks’ Gestation and Odds of Offspring Attention-Deficit/Hyperactivity Disorder Diagnosis in the Norwegian Mother, Father, and Child Cohort Study

    Get PDF
    Prenatal organophosphorus pesticides (OPs) are ubiquitous and have been linked to adverse neurodevelopmental outcomes. However, few studies have examined prenatal OPs in relation to diagnosed attention-deficit/hyperactivity disorder (ADHD), with only two studies exploring this relationship in a population primarily exposed through diet. In this study, we used a nested case-control study to evaluate prenatal OP exposure and ADHD diagnosis in the Norwegian Mother, Father, and Child Cohort Study (MoBa). For births that occurred between 2003 and 2008, ADHD diagnoses were obtained from linkage of MoBa participants with the Norwegian Patient Registry (N = 297), and a reference population was randomly selected from the eligible population (N = 552). Maternal urine samples were collected at 17 weeks’ gestation and molar sums of diethyl phosphates (ΣDEP) and dimethyl phosphates metabolites (ΣDMP) were calculated. Multivariable adjusted logistic regression models were used to estimate the association between prenatal OP metabolite exposure and child ADHD diagnosis. Additionally, multiplicative effect measure modification (EMM) by child sex was assessed. In most cases, mothers in the second and third tertiles of ΣDMP and ΣDEP exposure had slightly lower odds of having a child with ADHD, although confidence intervals were wide and included the null. EMM by child sex was not observed for either ΣDMP or ΣDEP. In summary, we did not find evidence that OPs at 17 weeks’ gestation increased the odds of ADHD in this nested case-control study of ADHD in MoBa, a population primarily experiencing dietary exposure

    The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts for 0.2-2 microns wavelength

    Get PDF
    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {\mu}m in wavelength at 0.07-0.15" FWHM resolution and 0.090" Multidrizzled pixels to depths of AB\simeq 26.0-27.0 mag (5-{\sigma}) for point sources, and AB\simeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15" FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to AB\simeq 25-26 mag from the UV to the near-IR, respectively.Comment: 51 pages, 71 figures Accepted to ApJS 2011.01.2
    • …
    corecore