4,215 research outputs found

    Region-wide temporal and spatial variation in Caribbean reef architecture: is coral cover the whole story?

    Get PDF
    The architectural complexity of coral reefs is largely generated by reef-building corals, yet the effects of current regional-scale declines in coral cover on reef complexity are poorly understood. In particular, both the extent to which declines in coral cover lead to declines in complexity and the length of time it takes for reefs to collapse following coral mortality are unknown. Here we assess the extent of temporal and spatial covariation between coral cover and reef architectural complexity using a Caribbean-wide dataset of temporally replicated estimates spanning four decades. Both coral cover and architectural complexity have declined rapidly over time, with little evidence of a time-lag. However, annual rates of change in coral cover and complexity do not covary, and levels of complexity vary greatly among reefs with similar coral cover. These findings suggest that the stressors influencing Caribbean reefs are sufficiently severe and widespread to produce similar regional-scale declines in coral cover and reef complexity, even though reef architectural complexity is not a direct function of coral cover at local scales. Given that architectural complexity is not a simple function of coral cover, it is important that conservation monitoring and restoration give due consideration to both architecture and coral cover. This will help ensure that the ecosystem services supported by architectural complexity, such as nutrient recycling, dissipation of wave energy, fish production and diversity, are maintained and enhanced

    Medium effects on phi decays to dilepton and kaon-antikaon pairs in relativistic heavy ion reactions

    Get PDF
    We consider the role of rescattering of secondary kaons on the dilepton branching ratio of the phi meson. In-medium mass modifications and broadening of kaons and phi mesons are taken into account. We find in the framework of a Bjorken scenario for the time evolution of the expanding fireball that the phi yield from dimuons is moderately or at least only slightly enhanced compared to that from kaon-antikaon pairs. The relation to experimental yields measured by the NA49, NA50 and CERES Collaborations at CERN SPS and the PHENIX Collaboration at RHIC is discussed.Comment: 6 pages with 2 figures, accepted for publication in Eur. Phys. J.

    Phi meson production in In-In collisions at ElabE_{\rm lab}=158AA GeV: evidence for relics of a thermal phase

    Full text link
    Yields and transverse mass distributions of the ϕ\phi-mesons reconstructed in the ϕμ+μ\phi\to\mu^+\mu^- channel in In+In collisions at ElabE_{\rm lab}=158AA GeV are calculated within an integrated Boltzmann+hydrodynamics hybrid approach based on the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model with an intermediate hydrodynamic stage. The analysis is performed for various centralities and a comparison with the corresponding NA60 data in the muon channel is presented. We find that the hybrid model, that embeds an intermediate locally equilibrated phase subsequently mapped into the transport dynamics according to thermal phase-space distributions, gives a good description of the experimental data, both in yield and slope. On the contrary, the pure transport model calculations tend to fail in catching the general properties of the ϕ\phi meson production: not only the yield, but also the slope of the mTm_T spectra, very poorly compare with the experimental observations

    The IUCN Red List of Ecosystems: motivations, challenges, and applications

    Get PDF
    Abstract In response to growing demand for ecosystem-level risk assessment in biodiversity conservation, and rapid proliferation of locally tailored protocols, the IUCN recently endorsed new Red List criteria as a global standard for ecosystem risk assessment. Four qualities were sought in the design of the IUCN criteria: generality; precision; realism; and simplicity. Drawing from extensive global consultation, we explore trade-offs among these qualities when dealing with key challenges, including ecosystem classification, measuring ecosystem dynamics, degradation and collapse, and setting decision thresholds to delimit ordinal categories of threat. Experience from countries with national lists of threatened ecosystems demonstrates well-balanced trade-offs in current and potential applications of Red Lists of Ecosystems in legislation, policy, environmental management and education. The IUCN Red List of Ecosystems should be judged by whether it achieves conservation ends and improves natural resource management, whether its limitations are outweighed by its benefits, and whether it performs better than alternative methods. Future development of the Red List of Ecosystems will benefit from the history of the Red List of Threatened Species which was trialed and adjusted iteratively over 50 years from rudimentary beginnings. We anticipate the Red List of Ecosystems will promote policy focus on conservation outcomes in situ across whole landscapes and seascapes

    Phi meson production in relativistic heavy ion collisions

    Get PDF
    Within a multiphase transport model we study phi meson production in relativistic heavy ion collisions from both superposition of initial multiple proton-proton interactions and the secondary collisions in the produced hadronic matter. The yield of phi mesons is then reconstructed from their decaying product of either the kaon-antikaon pairs or the dimuon pairs. Since the kaon-antikaon pairs at midrapidity with low transverse momenta are predominantly rescattered or absorbed in the hadronic medium, they can not be used to reconstruct the phi meson and lead thus to a smaller reconstructed phi meson yield than that reconstructed from the dimuon channel. With in-medium mass modifications of kaons and phi mesons, the phi yield from dimuons is further enhanced compared to that from the kaon-antikaon pairs. The model result is compared with the experimental data at the CERN/SPS and RHIC energies and its implications to quark-gluon plasma formation are discussed.Comment: Revised version, to appear in Nucl. Phys.

    Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

    Get PDF
    BACKGROUND. The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS. Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE. Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.NOAA Coral Reef Conservation Progra

    Systematic review and meta-analysis of ocean acidification effects in Halimeda: Implications for algal carbonate production

    Get PDF
    Ocean acidification (OA) has been identified as one of the major climate-change related threats, mainly due to its significant impacts on marine calcifiers. Among those are the calcareous green algae of the genus Halimeda that are known to be major carbonate producers in shallow tropical and subtropical seas. Hence, any negative OA impacts on these organisms may translate into significant declines in regional and global carbonate production. In this study, we compiled the available information regarding Halimeda spp. responses to OA (experimental, in situ), with special focus on the calcification responses, one of the most studied response parameters in this group. Furthermore, among the compiled studies (n = 31), we selected those reporting quantitative data of OA effects on algal net calcification in an attempt to identify potential general patterns of species- and/or regional-specific OA responses and hence, impacts on carbonate production. While obtaining general patterns was largely hampered by the often scarce number of studies on individual species and/or regions, the currently available information indicates species-specific susceptibility to OA, seemingly unrelated to evolutionary lineages (and associated differences in morphology), that is often accompanied by differences in a species� response across different regions. Thus, for projections of future declines in Halimeda-associated carbonate production, we used available regional reports of species-specific carbonate production in conjunction with experimental OA responses for the respective species and regions. Based on the available information, declines can be expected worldwide, though some regions harbouring more sensitive species might be more impacted than others
    corecore