697 research outputs found

    Radiative processes as a condensation phenomenon and the physical meaning of deformed canonical structures

    Full text link
    Working with well known models in (2+1)D(2+1)D we discuss the physics behind the deformation of the canonical structure of these theories. A new deformation is constructed linking the massless scalar field theory with the self-dual theory. This is the exact dual of the known deformation connecting the Maxwell theory with the Maxwell-Chern-Simons theory. Duality is used to establish a web of relations between the mentioned theories and a physical picture of the deformation procedure is suggested.Comment: revtex4 file, 16 page

    Role of rare earth elements and entropy on the anatase-to-rutile phase transformation of TiO2thin films deposited by ion beam sputtering

    Get PDF
    The role played by oxygen vacancies and rare earth (RE) elements in the anatase-to-rutile (A−R) phase transformation of titanium dioxide (TiO2) is still a matter of controversy. Here, we report the A−R transformation of TiO2 thin solid films as obtained by ion beam sputtering a RE-decorated titanium target in an oxygen-rich atmosphere. The samples correspond to undoped, single-doped (Sm, Tm, and Tb), and codoped (Sm:Tb, Sm:Tm, and Sm:Tb:Tm) TiO2 films. In the as-prepared form, the films are amorphous and contain ∼0.5 at. % of each RE. The structural modifications of the TiO2 films due to the RE elements and the annealing treatments in an oxygen atmosphere are described according to the experimental results provided by Raman scattering, X-ray photoelectron spectroscopy, and optical measurements. The A−R transformation depends on both the annealing temperature and the characteristics of the undoped, single-doped, and codoped TiO2 films. As reported in the literature, the A−R transformation can be inhibited or enhanced by the presence of impurities and is mostly related to energetic contributions. The experimental results were analyzed, considering the essential and stabilizing role of the entropy of mixing in the A−R transformation due to the introduction of more and multiple quantum states originated in vacancies and impurities in the anatase phase.Fil: Scoca, Diego L.S.. Universidade Estadual de Campinas; BrasilFil: Cemin, Felipe. Universidade Estadual de Campinas; BrasilFil: Aldabe, Sara Alfonsina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Figueroa, Carlos A.. Universidade de Caxias Do Sul.; BrasilFil: Zanatta, Antonio R.. Universidade de Sao Paulo; BrasilFil: Alvarez, Fernando. Universidade Estadual de Campinas; Brasi

    Magnetic moments of the low-lying JP=1/2J^P=\,1/2^-, 3/23/2^- Λ\Lambda resonances within the framework of the chiral quark model

    Full text link
    The magnetic moments of the low-lying spin-parity JP=J^P= 1/21/2^-, 3/23/2^- Λ\Lambda resonances, like, for example, Λ(1405)\Lambda(1405) 1/21/2^-, Λ(1520)\Lambda(1520) 3/23/2^-, as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization

    Properties of hyperons in chiral perturbation theory

    Get PDF
    The development of chiral perturbation theory in hyperon phenomenology has been troubled due to power-counting subtleties and to a possible slow convergence. Furthermore, the presence of baryon-resonances, e.g. the lowest-lying decuplet, complicates the approach, and the inclusion of their effects may become necessary. Recently, we have shown that a fairly good convergence is possible using a renormalization prescription of the loop-divergencies which recovers the power counting, is covariant and consistent with analyticity. Moreover, we have systematically incorporated the decuplet resonances taking care of both power-counting and consistencyconsistency problems. A model-independent understanding of diferent properties including the magnetic moments of the baryon-octet, the electromagnetic structure of the decuplet resonances and the hyperon vector coupling f1(0)f_1(0), has been successfully achieved within this approach. We will briefly review these developments and stress the important role they play for an accurate determination of the Cabibbo-Kobayashi-Maskawa matrix element VusV_{us} from hyperon semileptonic decay data.Comment: To appear in HypX Proceeding

    Cryptanalysis of an image encryption scheme based on the Hill cipher

    Full text link
    This paper studies the security of an image encryption scheme based on the Hill cipher and reports its following problems: 1) there is a simple necessary and sufficient condition that makes a number of secret keys invalid; 2) it is insensitive to the change of the secret key; 3) it is insensitive to the change of the plain-image; 4) it can be broken with only one known/chosen-plaintext; 5) it has some other minor defects.Comment: 10 pages, three figure

    On Necessary and Sufficient Conditions for Near-Optimal Singular Stochastic Controls

    Full text link
    This paper is concerned with necessary and sufficient conditions for near-optimal singular stochastic controls for systems driven by a nonlinear stochastic differential equations (SDEs in short). The proof of our result is based on Ekeland's variational principle and some delicate estimates of the state and adjoint processes. This result is a generalization of Zhou's stochastic maximum principle for near-optimality to singular control problem.Comment: 19 pages, submitted to journa

    Testing spatial noncommutativiy via the Aharonov-Bohm effect

    Get PDF
    The possibility of detecting noncommutative space relics is analyzed using the Aharonov-Bohm effect. We show that, if space is noncommutative, the holonomy receives non-trivial kinematical corrections that will produce a diffraction pattern even when the magnetic flux is quantized. The scattering problem is also formulated, and the differential cross section is calculated. Our results can be extrapolated to high energy physics and the bound θ[10TeV]2\theta \sim [ 10 {TeV}]^{-2} is found. If this bound holds, then noncommutative effects could be explored in scattering experiments measuring differential cross sections for small angles. The bound state Aharonov- Bohm effect is also discussed.Comment: 16 pp, Revtex 4, 2 fig, new references added. To appear in PR

    Associations of Comorbid Conditions and Transitions Across States of Knee Osteoarthritis in a Community-Based Cohort

    Get PDF
    Objective: To examine relationships between knee osteoarthritis (KOA) and obesity, diabetes mellitus (DM), and cardiovascular disease (CVD). Methods: Associations of time-dependent obesity, DM, and CVD with KOA transition states over approximately 18 years were examined among 4093 participants from a community-based cohort. Transition states were 1) no knee symptoms and no radiographic KOA (rKOA; Kellgren-Lawrence grade ≥2 in at least one knee), 2) asymptomatic rKOA, 3) knee symptoms only, 4) symptomatic rKOA (sxKOA; rKOA and symptoms in same knee). Markov multistate models estimated adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for associations between comorbid conditions and transitions across states, adjusting for baseline age, sex, race, education, enrollment cohort, birth year, and time-dependent knee injury history. Results: At baseline, 40% of participants had obesity, 13% had DM, and 22% had CVD (mean age = 61 years; 34% Black; 37% male). Compared with those without obesity, those with obesity had a higher hazard of worsening from no rKOA/no symptoms to asymptomatic rKOA (aHR = 1.7; 95% CI = 1.3-2.2) and from knee symptoms to sxKOA (aHR = 1.7; 95% CI = 1.3-2.3), as well as a lower hazard of symptom resolution from sxKOA to asymptomatic rKOA (aHR = 0.5 [95% = CI 0.4-0.7]). Compared with those without CVD, those with CVD had a higher hazard of worsening from no rKOA/symptoms to knee symptoms (aHR = 1.5; 95% CI = 1.1-2.1). DM was not associated with transitions of rKOA. Conclusion: Prevention of obesity and CVD may limit the development or worsening of rKOA and symptoms

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    A Measurement of Coherent Neutral Pion Production in Neutrino Neutral Current Interactions in NOMAD

    Get PDF
    We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to 1.44×1061.44 \times 10^6 muon-neutrino Charged Current interactions in the energy range 2.5Eν3002.5 \leq E_{\nu} \leq 300 GeV. Neutrino events with only one visible π0\pi^0 in the final state are expected to result from two Neutral Current processes: coherent π0\pi^0 production, {\boldmath ν+Aν+A+π0\nu + {\cal A} \to \nu + {\cal A} + \pi^0} and single π0\pi^0 production in neutrino-nucleon scattering. The signature of coherent π0\pi^0 production is an emergent π0\pi^0 almost collinear with the incident neutrino while π0\pi^0's produced in neutrino-nucleon deep inelastic scattering have larger transverse momenta. In this analysis all relevant backgrounds to the coherent π0\pi^0 production signal are measured using data themselves. Having determined the backgrounds, and using the Rein-Sehgal model for the coherent π0\pi^0 production to compute the detection efficiency, we obtain {\boldmath 4630±522(stat)±426(syst)4630 \pm 522 (stat) \pm 426 (syst)} corrected coherent-π0\pi^0 events with Eπ00.5E_{\pi^0} \geq 0.5 GeV. We measure {\boldmath σ(νAνAπ0)=[72.6±8.1(stat)±6.9(syst)]×1040cm2/nucleus\sigma (\nu {\cal A} \to \nu {\cal A} \pi^0) = [ 72.6 \pm 8.1(stat) \pm 6.9(syst) ] \times 10^{-40} cm^2/nucleus}. This is the most precise measurement of the coherent π0\pi^0 production to date.Comment: 23 pages, 9 figures, accepted for publication in Phys. Lett.
    corecore