111 research outputs found

    An unusual outbreak of nontuberculous mycobacteria in hospital respiratory wards: Association with nontuberculous mycobacterial colonization of hospital water supply network

    Get PDF
    AbstractThe incidence and prevalence of pulmonary nontuberculous mycobacterial (NTM) infection is increasing worldwide arousing concerns that NTM infection may become a serious health challenge. We recently observed a significant increase of NTM-positive sputa samples from patients referred to respiratory disease wards of a large tertiary hospital in Rome. A survey to identify possible NTM contamination revealed a massive presence of NTM in the hospital water supply network. After decontamination procedures, NTM presence dropped both in water pipelines and sputa samples. We believe that this observation should encourage water network surveys for NTM contamination and prompt decontamination procedures should be considered to reduce this potential source of infection

    Generation of an induced pluripotent stem cell line (CSS012-A (7672)) carrying the p.G376D heterozygous mutation in the TARDBP protein

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative condition with phenotypic and genetic heterogeneity. It is characterized by the selective vulnerability and the progressive loss of the neural population. Here, an induced pluripotent stem cell (iPSC) line was generated from dermal fibroblasts of an individual carrying the p.G376D mutation in the TDP-43 protein. Fibroblasts were reprogrammed using nonintegrating episomal plasmids. There were no karyotype abnormalities, and iPSCs successfully differentiated into all three germ layers. This cell line may prove useful in the study of the pathogenic mechanisms that underpin ALS syndrome

    Water diversion and pollution interactively shape freshwater food webs through bottom-up mechanisms

    Get PDF
    [EN] Water diversion and pollution are two pervasive stressors in river ecosystems that often co-occur. Individual effects of both stressors on basal resources available to stream communities have been described, with diversion reducing detritus standing stocks and pollution increasing biomass of primary producers. However, interactive effects of both stressors on the structure and trophic basis of food webs remain unknown. We hypothesized that the interaction between both stressors increases the contribution of the green pathway in stream food webs. Given the key role of the high-quality, but less abundant, primary producers, we also hypothesized an increase in food web complexity with larger trophic diversity in the presence of water diversion and pollution. To test these hypotheses, we selected four rivers in a range of pollution subject to similar water diversion schemes, and we compared food webs upstream and downstream of the diversion. We characterized food webs by means of stable isotope analysis. Both stressors directly changed the availability of basal resources, with water diversion affecting the brown food web by decreasing detritus stocks, and pollution enhancing the green food web by promoting biofilm production. The propagation of the effects at the base of the food web to higher trophic levels differed between stressors. Water diversion had little effect on the structure of food webs, but pollution increased food chain length and trophic diversity, and reduced trophic redundancy. The effects at higher trophic levels were exacerbated when combining both stressors, as the relative contribution of biofilm to the stock of basal resources increased even further. Overall, we conclude that moderate pollution increases food web complexity and that the interaction with water abstraction seems to amplify this effect. Our study shows the importance of assessing the interaction between stressors to create predictive tools for a proper management of ecosystems.Ministerio de Economia, Industria y Competitividad, Gobierno de Espana, Grant/Award Number: GL2016-77487-R; European Social Fund; Diputacion Foral de Bizkaia; Serra Hunter Fellow; Labex, Grant/Award Number: ANR-10-LABX-41; H2020 European Research Council; Eusko Jaurlaritza; Consejo Nacional de Investigaciones Cientificas y Tecnicas; FRAGCLIM Consolidator, Grant/Award Number: 72617

    The RPC system for the CMS experiment at the LHC

    Get PDF
    The CMS detector at the LHC has a redundant muon system. Two independent muon systems are used in the L1 trigger. One of them is based on wire chambers, the other on RPC detectors. Properly combining the answers of the two systems results in a highly efficient L1 trigger with high flexibility from the point of view of rate control. Simulation results show, however, that the RPC system suffers from false triggers caused by coincidence of spurious hits. System improvements, which could avoid oiling the chambers, are possible. RPCs have also proved to be very useful for muon track reconstruction

    Quality of care provided by Multiple Sclerosis Centers during Covid-19 pandemic: Results of an Italian multicenter patient-centered survey

    Get PDF
    Background: Covid-19 pandemic impacted on management of people with Multiple Sclerosis (pwMS). Level of satisfaction of pwMS regarding the care received by the staff of Multiple Sclerosis Centers (MSCs) during the pandemic was not fully investigated. In a large patient-centered multicenter study, the therapeutic adherence and quality of care of MSCs was assessed. Methods: In April-May 2021, an online survey was widespread by 16 Italian MSCs. Frequencies, percentages and/or means and standard deviations were calculated to describe the sample. ANOVAs were performed to evaluate the effect of sociodemographic and clinical variables on overall pwMS' rating of MSC assistance. Results: 1670 pwMS completed the survey (67.3% women). During the pandemic, 88% did not change their disease modifying therapy schedule, and 89.1% reached their MSCs with no or little difficulties. Even if only 1.3% of participants underwent a tele-health follow-up visit with their MSC staff, the 80.1% believed that tele-health services should be improved regardless of pandemic. 92% of participants were satisfied of how their MSC took charge of their needs; ANOVAs revealed an effect of disease duration on pwMS' level of satisfaction on MSCs management during the pandemic. Conclusions: The results revealed an efficient MSCs response to Covid-19 pandemic and provided the basis for the implementing of tele-health services that would further improve the taking charge of patients, particularly those with longer disease, higher disability, and/or living far from their MSC

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Inhibition of Progenitor Dendritic Cell Maturation by Plasma from Patients with Peripartum Cardiomyopathy: Role in Pregnancy-associated Heart Disease

    Get PDF
    Dendritic cells (DCs) play dual roles in innate and adaptive immunity based on their functional maturity, and both innate and adaptive immune responses have been implicated in myocardial tissue remodeling associated with cardiomyopathies. Peripartum cardiomyopathy (PPCM) is a rare disorder which affects women within one month antepartum to five months postpartum. A high occurrence of PPCM in central Haiti (1 in 300 live births) provided the unique opportunity to study the relationship of immune activation and DC maturation to the etiology of this disorder. Plasma samples from two groups (n = 12) of age- and parity-matched Haitian women with or without evidence of PPCM were tested for levels of biomarkers of cardiac tissue remodeling and immune activation. Significantly elevated levels of GM-CSF, endothelin-1, proBNP and CRP and decreased levels of TGF- were measured in PPCM subjects relative to controls. Yet despite these findings, in vitro maturation of normal human cord blood derived progenitor dendritic cells (CBDCs) was significantly reduced (p < 0.001) in the presence of plasma from PPCM patients relative to plasma from post-partum control subjects as determined by expression of CD80, CD86, CD83, CCR7, MHC class II and the ability of these matured CBDCs to induce allo-responses in PBMCs. These results represent the first findings linking inhibition of DC maturation to the dysregulation of normal physiologic cardiac tissue remodeling during pregnancy and the pathogenesis of PPCM

    PPARG dysregulation as a potential molecular target in adrenal Cushing's syndrome

    Get PDF
    BackgroundWe performed a transcriptomic analysis of adrenal signaling pathways in various forms of endogenous Cushing’s syndrome (CS) to define areas of dysregulated and druggable targets.MethodologyNext-generation sequencing was performed on adrenal samples of patients with primary bilateral macronodular adrenal hyperplasia (PBMAH, n=10) and control adrenal samples (n=8). The validation groups included cortisol-producing adenoma (CPA, n=9) and samples from patients undergoing bilateral adrenalectomy for Cushing’s disease (BADX-CD, n=8). In vivo findings were further characterized using three adrenocortical cell-lines (NCI-H295R, CU-ACC2, MUC1).ResultsPathway mapping based on significant expression patterns identified PPARG (peroxisome proliferator-activated receptor gamma) pathway as the top hit. Quantitative PCR (QPCR) confirmed that PPARG (l2fc&lt;-1.5) and related genes – FABP4 (l2fc&lt;-5.5), PLIN1 (l2fc&lt;-4.1) and ADIPOQ (l2fc&lt;-3.3) – were significantly downregulated (p&lt;0.005) in PBMAH. Significant downregulation of PPARG was also found in BADX-CD (l2fc&lt;-1.9, p&lt;0.0001) and CPA (l2fc&lt;-1.4, p&lt;0.0001). In vitro studies demonstrated that the PPARG activator rosiglitazone resulted in decreased cell viability in MUC1 and NCI-H295R (p&lt;0.0001). There was also a significant reduction in the production of aldosterone, cortisol, and cortisone in NCI-H295R and in Dihydrotestosterone (DHT) in MUC1 (p&lt;0.05), respectively.OutcomeThis therapeutic effect was independent of the actions of ACTH, postulating a promising application of PPARG activation in endogenous hypercortisolism
    • 

    corecore