7 research outputs found

    Isolation and identification of allergens and biogenic amines of Prosopis juliflora genotypes

    Get PDF
    Background: Prosopis, or mesquite (Prosopis juliflora (Sw.) DC.), was introduced in Saudi Arabia several decades ago and is heavily used in street, roadside, and park plantations. It shows great adaptation to the prevailing climatic conditions such as high temperature, severe drought, and salinity and spreads naturally in many parts of the Kingdom. This research was conducted to isolate allergen proteins and biogenic amines from the pollen grains of P. juliflora genotypes in Saudi Arabia from two regions, namely Al-Qassim and Eastern regions. Results: The results showed that 18 different allergen proteins were detected in P. juliflora genotypes, with molecular weight ranging from 14 to 97 kDa. Moreover, P. juliflora genotypes from the two studied regions contained eight biogenic amines, namely histamine, tyramine, tryptamine, \u3b2-phenylethylamine, butricine, codapherine, spermidine, and spermine. All genotypes from the Al-Qassim region were found to contain all eight amines, while in the Eastern region, histamine was absent in three genotypes, spermine was absent in six genotypes, and spermidine was absent in three genotypes. Genotypes B23, E20, and E21 had the lowest biogenic amine quantity. Conclusions: All identified proteins from mesquite trees from both regions (Eastern and Al-Qassim) cause allergies in patients who are sensitive to pollen grains. Bioamines, except histamine and tyramine, were recorded at varying concentrations in different genotypes

    Isolation and identification of allergens and biogenic amines of Prosopis juliflora genotypes

    No full text
    Background: Prosopis, or mesquite (Prosopis juliflora (Sw.) DC.), was introduced in Saudi Arabia several decades ago and is heavily used in street, roadside, and park plantations. It shows great adaptation to the prevailing climatic conditions such as high temperature, severe drought, and salinity and spreads naturally in many parts of the Kingdom. This research was conducted to isolate allergen proteins and biogenic amines from the pollen grains of P. juliflora genotypes in Saudi Arabia from two regions, namely Al-Qassim and Eastern regions. Results: The results showed that 18 different allergen proteins were detected in P. juliflora genotypes, with molecular weight ranging from 14 to 97 kDa. Moreover, P. juliflora genotypes from the two studied regions contained eight biogenic amines, namely histamine, tyramine, tryptamine, β-phenylethylamine, butricine, codapherine, spermidine, and spermine. All genotypes from the Al-Qassim region were found to contain all eight amines, while in the Eastern region, histamine was absent in three genotypes, spermine was absent in six genotypes, and spermidine was absent in three genotypes. Genotypes B23, E20, and E21 had the lowest biogenic amine quantity. Conclusions: All identified proteins from mesquite trees from both regions (Eastern and Al-Qassim) cause allergies in patients who are sensitive to pollen grains. Bioamines, except histamine and tyramine, were recorded at varying concentrations in different genotypes. Keywords: Allergen proteins, Bioamine, Histamine, Pollen, Tree, Tyramin

    Deciphering the Potential of Bioactivated Rock Phosphate and Di-Ammonium Phosphate on Agronomic Performance, Nutritional Quality and Productivity of Wheat (Triticum aestivum L.)

    No full text
    Wheat is one of the leading staple crops in many countries. Phosphorus (P) plays an important role for wheat growth and yield as it takes part in many metabolic pathways. Even for soluble phosphatic fertilizers, most of the Pakistani soils, being alkaline and calcareous in nature, show phosphorus use efficiency (PUE) not more than 10–25%. The major issue is the unavailability of P due to fixation and precipitation reactions with soil particles. Composting of rock-phosphate with animal and poultry manures supplied with bio-stimulated phosphate solubilizing bacteria (PSB) not only enhances the RP solubilization but also serves as a potent source of P for plants. Composted/bio-activated rock-phosphate (B-RP), prepared by group of three bacterial strains i.e., Pseudomonas sp. (E11), Bacillus sp. (MN54) and Enterobacter sp. (MN17) aided with molasses (5%) and urea (10%), was tested alone and in various combinations with di-ammonium phosphate (DAP). In this pot trial, the combined application of B-RP and DAP was found superior to the sole application of B-RP. Even the combination of B-RP and DAP sharing equal amount of recommended P showed better results as compared to the sole application of DAP, giving improved shoot biomass (25%), total P-uptake (67%), recovery efficiency of P (75%), dry matter (29%), crude protein (29%), and other yield, physiological and nutritional quality parameters of wheat. So, it could be concluded that integrated use of B-RP and DAP with equal proportion of recommended P could serve as a better management practice for not only improving quantity but also the quality of the wheat grain
    corecore