45 research outputs found

    Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease

    Get PDF
    The pathophysiology of levodopa-induced dyskinesias (LID) in Parkinson’s disease is not well understood. We have recorded local field potentials (LFP) from macroelectrodes implanted in the subthalamic nucleus (STN) of 14 patients with Parkinson’s disease following surgical treatment with deep brain stimulation. Patients were studied in the ‘Off’ medication state and in the ‘On’ motor state after administration of levodopa– carbidopa (po) or apomorphine (sc) that elicited dyskinesias in 11 patients. The logarithm of the power spectrum of the LFP in selected frequency bands (4–10, 11–30 and 60–80 Hz) was compared between the ‘Off’ and ‘On’ medication states. A peak in the 11–30 Hz band was recorded in the ‘Off’ medication state and reduced by 45.2% (P < 0.001) in the ‘On’ state. The ‘On’ was also associated with an increment of 77. 6% (P < 0.001) in the 4–10 Hz band in all patients who showed dyskinesias and of 17.8% (P < 0.001) in the 60–80 Hz band in the majority of patients. When dyskinesias were only present in one limb (n = 2), the 4–10 Hz peak was only recorded in the contralateralSTN. These findings suggest that the 4–10 Hz oscillation is associated with the expression of LID in Parkinson’s disease

    A torque-based method demonstrates increased rigidity in Parkinson’s disease during low-frequency stimulation

    Get PDF
    Low-frequency oscillations in the basal ganglia are prominent in patients with Parkinson’s disease off medication. Correlative and more recent interventional studies potentially implicate these rhythms in the pathophysiology of Parkinson’s disease. However, effect sizes have generally been small and limited to bradykinesia. In this study, we investigate whether these effects extend to rigidity and are maintained in the on-medication state. We studied 24 sides in 12 patients on levodopa during bilateral stimulation of the STN at 5, 10, 20, 50, 130 Hz and in the off-stimulation state. Passive rigidity at the wrist was assessed clinically and with a torque-based mechanical device. Low-frequency stimulation at ≀20 Hz increased rigidity by 24 % overall (p = 0.035), whereas high-frequency stimulation (130 Hz) reduced rigidity by 18 % (p = 0.033). The effects of low-frequency stimulation (5, 10 and 20 Hz) were well correlated with each other for both flexion and extension (r = 0.725 ± SEM 0.016 and 0.568 ± 0.009, respectively). Clinical assessments were unable to show an effect of low-frequency stimulation but did show a significant effect at 130 Hz (p = 0.002). This study provides evidence consistent with a mechanistic link between oscillatory activity at low frequency and Parkinsonian rigidity and, in addition, validates a new method for rigidity quantification at the wrist

    Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson\u27s disease study

    Get PDF
    \ua9 The Author(s) 2024. Estimates of the spectrum and frequency of pathogenic variants in Parkinson’s disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson’s disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∌0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≀ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≀ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9 7 10−34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1 7 10−35). Female patients were 22% more likely to have a positive PDGT (P = 3 7 10−4), and for individuals with FH+ this likelihood was 55% higher (P = 1 7 10−14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∌15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson's disease

    No full text

    Non-motor symptom burden is strongly correlated to motor complications in patients with Parkinson’s disease

    No full text
    COPPADIS Study Group.[Background and purpose] The objective of this study was to analyze the relationship between motor complications and non‐motor symptom (NMS) burden in a population of patients with Parkinson’s disease (PD) and also in a subgroup of patients with early PD.[Methods] Patients with PD from the COPPADIS cohort were included in this cross‐sectional study. NMS burden was defined according to the Non‐Motor Symptoms Scale (NMSS) total score. Unified Parkinson’s Disease Rating Scale (UPDRS) part IV was used to establish motor complication types and their severity. Patients with ≀5 years of symptoms from onset were included as patients with early PD.[Results] Of 690 patients with PD (62.6 ± 8.9 years old, 60.1% males), 33.9% and 18.1% presented motor fluctuations and dyskinesia, respectively. The NMS total score was higher in patients with motor fluctuations (59.2 ± 43.1 vs. 38.3 ± 33.1; P 40, severe or very severe) (odds ratio, 1.31; 95% confidence intervals, 1.17–1.47; P < 0.0001). In the subgroup of patients with early PD (n = 396; mean disease duration 2.7 ± 1.5 years), motor fluctuations were frequent (18.1%) and similar results were obtained.[Conclusions] Motor complications were frequent and were associated with a greater NMS burden in patients with PD even during the first 5 years of disease duration
    corecore