83 research outputs found

    Global Origin of Mycobacterium tuberculosis in the Midlands, UK

    Get PDF
    DNA fingerprinting data for 4,207 Mycobacterium tuberculosis isolates were combined with data from a computer program (Origins). Largest population groups were from England (n = 1,031) and India (n = 912), and most prevalent strains were the Euro-American (45%) and East African–Indian (34%) lineages. Combining geographic and molecular data can enhance cluster investigation

    The Forest behind the Tree: Phylogenetic Exploration of a Dominant Mycobacterium tuberculosis Strain Lineage from a High Tuberculosis Burden Country

    Get PDF
    BACKGROUND: Genotyping of Mycobacterium tuberculosis isolates is a powerful tool for epidemiological control of tuberculosis (TB) and phylogenetic exploration of the pathogen. Standardized PCR-based typing, based on 15 to 24 mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) loci combined with spoligotyping, has been shown to have adequate resolution power for tracing TB transmission and to be useful for predicting diverse strain lineages in European settings. Its informative value needs to be tested in high TB-burden countries, where the use of genotyping is often complicated by dominance of geographically specific, genetically homogeneous strain lineages. METHODOLOGY/PRINCIPAL FINDINGS: We tested this genotyping system for molecular epidemiological analysis of 369 M. tuberculosis isolates from 3 regions of Brazil, a high TB-burden country. Deligotyping, targeting 43 large sequence polymorphisms (LSPs), and the MIRU-VNTRplus identification database were used to assess phylogenetic predictions. High congruence between the different typing results consistently revealed the countrywide supremacy of the Latin-American-Mediterranean (LAM) lineage, comprised of three main branches. In addition to an already known RDRio branch, at least one other branch characterized by a phylogenetically informative LAM3 spoligo-signature seems to be globally distributed beyond Brazil. Nevertheless, by distinguishing 321 genotypes in this strain population, combined MIRU-VNTR typing and spoligotyping demonstrated the presence of multiple distinct clones. The use of 15 to 24 loci discriminated 21 to 25% more strains within the LAM lineage, compared to a restricted lineage-specific locus set suggested to be used after SNP analysis. Noteworthy, 23 of the 28 molecular clusters identified were exclusively composed of patient isolates from a same region, consistent with expected patterns of mostly local TB transmission. CONCLUSIONS/SIGNIFICANCE: Standard MIRU-VNTR typing combined with spoligotyping can reveal epidemiologically meaningful clonal diversity behind a dominant M. tuberculosis strain lineage in a high TB-burden country and is useful to explore international phylogenetical ramifications

    Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study

    Get PDF
    Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early

    Transmission of MDR and XDR Tuberculosis in Shanghai, China

    Get PDF
    Background: Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) are global health problems. We sought to determine the characteristics, prevalence, and relative frequency of transmission of MDR and XDR TB in Shanghai, one of the largest cities in Asia. Methods: TB is diagnosed in district TB hospitals in Shanghai, China. Drug susceptibility testing for first-line drugs was performed for all culture positive TB cases, and tests for second-line drugs were performed for MDR cases. VNTR-7 and VNTR-16 were used to genotype the strains, and prior treatment history and treatment outcomes were determined for each patient. Results: There were 4,379 culture positive TB cases diagnosed with drug susceptibility test results available during March 2004 through November 2007. 247 (5.6%) were infected with a MDR strain of M. tuberculosis and 11 (6.3%) of the 175 MDR patients whose isolate was tested for susceptibility to second-line drugs, were XDR. More than half of the patients with MDR and XDR were newly diagnosed and had no prior history of TB treatment. Nearly 57 % of the patients with MDR were successfully treated. Discussion: Transmission of MDR and XDR strains is a serious problem in Shanghai. While a history of prior anti-TB treatment indicates which individuals may have acquired MDR or XDR TB, it does not accurately predict which TB patients have disease caused by transmission of MDR and XDR strains. Therefore, universal drug susceptibility testing i

    Determination of circulating Mycobacterium tuberculosis strains and transmission patterns among pulmonary TB patients in Kawempe municipality, Uganda, using MIRU-VNTR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mycobacterial interspersed repetitive units - variable number of tandem repeats (MIRU-VNTR) genotyping is a powerful tool for unraveling clonally complex <it>Mycobacterium tuberculosis </it>(MTB) strains and detection of transmission patterns. Using MIRU-VNTR, MTB genotypes and their transmission patterns among patients with new and active pulmonary tuberculosis (PTB) in Kawempe municipality in Kampala, Uganda was determined.</p> <p>Results</p> <p>MIRU-VNTR genotyping was performed by PCR-amplification of 15 MTB-MIRU loci from 113 cultured specimens from 113 PTB patients (one culture sample per patient). To determine lineages, the genotypes were entered into the MIRU-VNTR<it>plus </it>database [<url>http://www.miru-vntrplus.org/</url>] as numerical codes corresponding to the number of alleles at each locus. Ten different lineages were obtained: Uganda II (40% of specimens), Uganda I (14%), LAM (6%), Delhi/CAS (3%), Haarlem (3%), Beijing (3%), Cameroon (3%), EAI (2%), TUR (2%) and S (1%). Uganda I and Uganda II were the most predominant genotypes. Genotypes for 29 isolates (26%) did not match any strain in the database and were considered unique. There was high diversity of MIRU-VNTR genotypes, with a total of 94 distinct patterns. Thirty four isolates grouped into 15 distinct clusters each with two to four isolates. Eight households had similar MTB strains for both index and contact cases, indicating possible transmission.</p> <p>Conclusion</p> <p>MIRU-VNTR genotyping revealed high MTB strain diversity with low clustering in Kawempe municipality. The technique has a high discriminatory power for genotyping MTB strains in Uganda.</p

    Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer

    Get PDF
    Tuberculosis remains a major global health problem. Laboratory diagnostic methods that allow effective, early detection of cases are central to management of tuberculosis in the individual patient and in the community. Since the 1880s, laboratory diagnosis of tuberculosis has relied primarily on microscopy and culture. However, microscopy fails to provide species- or lineage-level identification and culture-based workflows for diagnosis of tuberculosis remain complex, expensive, slow, technically demanding and poorly able to handle mixed infections. We therefore explored the potential of shotgun metagenomics, sequencing of DNA from samples without culture or target-specific amplification or capture, to detect and characterise strains from the Mycobacterium tuberculosis complex in smear-positive sputum samples obtained from The Gambia in West Africa. Eight smear- and culture-positive sputum samples were investigated using a differential-lysis protocol followed by a kit-based DNA extraction method, with sequencing performed on a benchtop sequencing instrument, the Illumina MiSeq. The number of sequence reads in each sputum-derived metagenome ranged from 989,442 to 2,818,238. The proportion of reads in each metagenome mapping against the human genome ranged from 20% to 99%. We were able to detect sequences from the M. tuberculosis complex in all eight samples, with coverage of the H37Rv reference genome ranging from 0.002X to 0.7X. By analysing the distribution of large sequence polymorphisms (deletions and the locations of the insertion element IS6110) and single nucleotide polymorphisms (SNPs), we were able to assign seven of eight metagenome-derived genomes to a species and lineage within the M. tuberculosis complex. Two metagenome-derived mycobacterial genomes were assigned to M. africanum, a species largely confined to West Africa; the others that could be assigned belonged to lineages T, H or LAM within the clade of "modern" M. tuberculosis strains. We have provided proof of principle that shotgun metagenomics can be used to detect and characterise M. tuberculosis sequences from sputum samples without culture or target-specific amplification or capture, using an accessible benchtop-sequencing platform, the Illumina MiSeq, and relatively simple DNA extraction, sequencing and bioinformatics protocols. In our hands, sputum metagenomics does not yet deliver sufficient depth of coverage to allow sequence-based sensitivity testing; it remains to be determined whether improvements in DNA extraction protocols alone can deliver this or whether culture, capture or amplification steps will be required. Nonetheless, we can foresee a tipping point when a unified automated metagenomics-based workflow might start to compete with the plethora of methods currently in use in the diagnostic microbiology laboratory

    Mycobacterium tuberculosis ecology in Venezuela: epidemiologic correlates of common spoligotypes and a large clonal cluster defined by MIRU-VNTR-24

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculosis remains an endemic public health problem, but the ecology of the TB strains prevalent, and their transmission, can vary by country and by region. We sought to investigate the prevalence of <it>Mycobacterium tuberculosis </it>strains in different regions of Venezuela. A previous study identified the most prevalent strains in Venezuela but did not show geographical distribution nor identify clonal genotypes. To better understand local strain ecology, we used spoligotyping to analyze 1298 <it>M. tuberculosis </it>strains isolated in Venezuela from 1997 to 2006, predominantly from two large urban centers and two geographically distinct indigenous areas, and then studied a subgroup with MIRU-VNTR 24 loci.</p> <p>Results</p> <p>The distribution of spoligotype families is similar to that previously reported for Venezuela and other South American countries: LAM 53%, T 10%, Haarlem 5%, S 1.9%, X 1.2%, Beijing 0.4%, and EAI 0.2%. The six most common shared types (SIT's 17, 93, 605, 42, 53, 20) accounted for 49% of the isolates and were the most common in almost all regions, but only a minority were clustered by MIRU-VNTR 24. One exception was the third most frequent overall, SIT 605, which is the most common spoligotype in the state of Carabobo but infrequent in other regions. MIRU-VNTR homogeneity suggests it is a clonal group of strains and was named the "Carabobo" genotype. Epidemiologic comparisons showed that patients with SIT 17 were younger and more likely to have had specimens positive for Acid Fast Bacilli on microscopy, and patients with SIT 53 were older and more commonly smear negative. Female TB patients tended to be younger than male patients. Patients from the high incidence, indigenous population in Delta Amacuro state were younger and had a nearly equal male:female distribution.</p> <p>Conclusion</p> <p>Six SIT's cause nearly half of the cases of tuberculosis in Venezuela and dominate in nearly all regions. Strains with SIT 17, the most common pattern overall may be more actively transmitted and SIT 53 strains may be less virulent and associated with reactivation of past infections in older patients. In contrast to other common spoligotypes, strains with SIT 605 form a clonal group centered in the state of Carabobo.</p
    corecore