3 research outputs found

    High repetition rate collisional soft X-ray lasers based on grazing incidence pumping

    Get PDF
    Includes bibliographical references (pages 11-12).We discuss the demonstration of gain-saturated high repetition rate table-top soft X-ray lasers producing microwatt average powers at wavelengths ranging from 13.9 to 33 nm. The results were obtained heating a precreated plasma with a picosecond optical laser pulse impinging at grazing incidence onto a precreated plasma. This pumping geometry increases the energy deposition efficiency of the pump beam into the gain region, making it possible to saturate soft X-ray lasers in this wavelength range with a short pulse pump energy of only 1 J at 800-nm wavelength. Results corresponding to 5-Hz repetition rate operation of gain-saturated 14.7-nm Ni-like Pd and 32.6-nm line Ne-like Ti lasers pumped by a table-top Ti:sapphire laser are reported. We also discuss results obtained using a 1 ⍵1054-nm prepulse and 2 ⍵527-nm short pulse from a Nd:glass pump laser. This work demonstrates the feasibility of producing compact high average power soft X-ray lasers for applications

    The Phosphoinositide-3-Kinase–Akt Signaling Pathway Is Important for Staphylococcus aureus Internalization by Endothelial Cells ▿

    No full text
    Internalization of Staphylococcus aureus in bovine endothelial cells (BEC) is increased by tumor necrosis factor alpha stimulation and NF-κB activation. Because the phosphoinositide-3-kinase (PI3K)–Akt signaling pathway also modulates NF-κB activity, we considered whether the internalization of S. aureus by BEC is associated with the activity of PI3K and Akt. We found a time- and multiplicity of infection-dependent phosphorylation of Akt on Ser473 in BEC infected with S. aureus. This phosphorylation was inhibited by LY294002 (LY), indicating the participation of PI3K. Inhibition of either PI3K with LY or wortmannin, or Akt with SH-5, strongly reduced the internalization of S. aureus. Transfection of BEC with a dominant-negative form of the Akt gene significantly decreased S. aureus internalization, whereas transfection with the constitutively active mutant increased the number of internalized bacterium. Inhibition of PDK1 activity with OSU-03012 did not affect the level of S. aureus internalization, demonstrating that phosphorylation of Akt on Thr308 is not important for this process. Compared to the untreated control, the adherence of S. aureus to the surface of BEC was unaltered when cells were transfected or incubated with the pharmacological inhibitors. Furthermore, Akt activation by internalized S. aureus triggered a time-dependent phosphorylation of glycogen synthase kinase-3α (GSK-3α) on Ser21 and GSK-3β on Ser9 that was partially inhibited with SH-5. Finally, treatment of BEC with LY prior to S. aureus infection inhibited the NF-κB p65 subunit phosphorylation on Ser536, indicating the involvement of PI3K. These results suggest that PI3K-Akt activity is important for the internalization of S. aureus and phosphorylation of GSK-3α, GSK-3β, and NF-κB
    corecore