279 research outputs found

    Can diversifying selection be distinguished from history in geographic clines? A population genomic study of killifish (Fundulus heteroclitus)

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 7 (2012): e45138, doi:10.1371/journal.pone.0045138.A common geographical pattern of genetic variation is the one-dimensional cline. Clines may be maintained by diversifying selection across a geographical gradient but can also reflect historical processes such as allopatry followed by secondary contact. To identify loci that may be undergoing diversifying selection, we examined the distribution of geographical variation patterns across the range of the killifish (Fundulus heteroclitus) in 310 loci, including microsatellites, allozymes, and single nucleotide polymorphisms. We employed two approaches to detect loci under strong diversifying selection. First, we developed an automated method to identify clinal variation on a per-locus basis and examined the distribution of clines to detect those that exhibited signifcantly steeper slopes. Second, we employed a classic -outlier method as a complementary approach. We also assessed performance of these techniques using simulations. Overall, latitudinal clines were detected in nearly half of all loci genotyped (i.e., all eight microsatellite loci, 12 of 16 allozyme loci and 44% of the 285 SNPs). With the exception of few outlier loci (notably mtDNA and malate dehydrogenase), the positions and slopes of Fundulus clines were statistically indistinguishable. The high frequency of latitudinal clines across the genome indicates that secondary contact plays a central role in the historical demography of this species. Our simulation results indicate that accurately detecting diversifying selection using genome scans is extremely difficult in species with a strong signal of secondary contact; neutral evolution under this history produces clines as steep as those expected under selection. Based on these results, we propose that demographic history can explain all clinal patterns observed in F. heteroclitus without invoking natural selection to either establish or maintain the pattern we observe today.This work was supported by the National Science Foundation (DEB-0919064 and IOS-105226

    Methods for estimating long-distance dispersal

    Get PDF
    Long-distance dispersal (LDD) includes events in which propagules arrive, but do not necessarily establish, at a site far removed from their origin. Although important in a variety of ecological contexts, the system-specific nature of LDD makes far removed difficult to quantify, partly, but not exclusively, because of inherent uncertainty typically involved with the highly stochastic LDD processes. We critically review the main methods employed in studies of dispersal, in order to facilitate the evaluation of their pertinence to specific aspects of LDD research. Using a novel classification framework, we identify six main methodological groups: biogeographical; Eulerian and Lagrangian movement/redistributional; short-term and long-term genetic analyses; and modeling. We briefly discuss the strengths and weaknesses of the most promising methods available for estimation of LDD, illustrating them with examples from current studies. The rarity of LDD events will continue to make collecting, analyzing, and interpreting the necessary data difficult, and a simple and comprehensive definition of LDD will remain elusive. However, considerable advances have been made in some methodological areas, such as miniaturization of tracking devices, elaboration of stable isotope and genetic analyses, and refinement of mechanistic models. Combinations of methods are increasingly used to provide improved insight on LDD from multiple angles. However, human activities substantially increase the variety of long-distance transport avenues, making the estimation of LDD even more challenging

    skelesim : an extensible, general framework for population genetic simulation in R

    Get PDF
    Simulations are a key tool in molecular ecology for inference and forecasting, as well as for evaluating new methods. Due to growing computational power and a diversity of software with different capabilities, simulations are becoming increasingly powerful and useful. However, the widespread use of simulations by geneticists and ecologists is hindered by difficulties in understanding these softwares’ complex capabilities, composing code and input files, a daunting bioinformatics barrier, and a steep conceptual learning curve. skeleSim (an R package) guides users in choosing appropriate simulations, setting parameters, calculating genetic summary statistics, and organizing data output, in a reproducible pipeline within the R environment. skeleSim is designed to be an extensible framework that can ‘wrap’ around any simulation software (inside or outside the R environment) and be extended to calculate and graph any genetic summary statistics. Currently, skeleSim implements coalescent and forward-time models available in the fastsimcoal2 and rmetasim simulation engines to produce null distributions for multiple population genetic statistics and marker types, under a variety of demographic conditions. skeleSim is intended to make simulations easier while still allowing full model complexity to ensure that simulations play a fundamental role in molecular ecology investigations. skeleSim can also serve as a teaching tool: demonstrating the outcomes of stochastic population genetic processes; teaching general concepts of simulations; and providing an introduction to the R environment with a user-friendly graphical user interface (using shiny)

    Development and characterization of microsatellite loci for the haploid–diploid red seaweed Gracilaria vermiculophylla

    Get PDF
    Microsatellite loci are popular molecular markers due to their resolution in distinguishing individual genotypes. However, they have rarely been used to explore the population dynamics in species with biphasic life cycles in which both haploid and diploid stages develop into independent, functional organisms. We developed microsatellite loci for the haploid–diploid red seaweed Gracilaria vermiculophylla, a widespread non-native species in coastal estuaries of the Northern hemisphere. Forty-two loci were screened for amplification and polymorphism. Nine of these loci were polymorphic across four populations of the extant range with two to eleven alleles observed. Mean observed and expected heterozygosities ranged from 0.265 to 0.527 and 0.317 to 0.387, respectively. Overall, these markers will aid in the study of the invasive history of this seaweed and further studies on the population dynamics of this important haploid–diploid primary producer

    Do Children Who Move Home and School Frequently Have Poorer Educational Outcomes in Their Early Years at School? An Anonymised Cohort Study

    Get PDF
    Frequent mobility has been linked to poorer educational attainment. We investigated the association between moving home and moving school frequently and the early childhood formal educational achievement. We carried out a cohort analysis of 121,422 children with anonymised linked records. Our exposure measures were: 1) the number of residential moves registered with a health care provider, and 2) number of school moves. Our outcome was the formal educational assessment at age 6–7. Binary regression modeling was used to examine residential moves within the three time periods: 0 – ,1 year; 1 – ,4 years and 4 – ,6 years. School moves were examined from age 4 to age 6. We adjusted for demographics, residential moves at different times, school moves and birth related variables. Children who moved home frequently were more likely not to achieve in formal assessments compared with children not moving. Adjusted odds ratios were significant for 3 or more moves within the time period 1 –,4 years and for any number of residential moves within the time period 4– ,6 years. There was a dose response relationship, with increased odds ratios with increased frequency of residential moves (2 or more moves at 4–,6 years, adjusted odds ratio 1.16 (1.03, 1.29). The most marked effect was seen with frequent school moves where 2 or more moves resulted in an adjusted odds ratio of 2.33 (1.82, 2.98). This is the first study to examine the relationship between residential and school moves in early childhood and the effect on educational attainment. Children experiencing frequent mobility may be disadvantaged and should be closely monitored. Additional educational support services should be afforded to children, particularly those who frequently change school, in order to help them achieve the expected educational standards

    Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells

    Get PDF
    Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan–hsa-miRNA-145 (CS–miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS–miRNA nanocomplexes were produced with a range of (+/−) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS–miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS–miRNA complexes offer a promising non-viral platform for breast cancer gene therapy

    Neuroarchitecture of Peptidergic Systems in the Larval Ventral Ganglion of Drosophila melanogaster

    Get PDF
    Recent studies on Drosophila melanogaster and other insects have revealed important insights into the functions and evolution of neuropeptide signaling. In contrast, in- and output connections of insect peptidergic circuits are largely unexplored. Existing morphological descriptions typically do not determine the exact spatial location of peptidergic axonal pathways and arborizations within the neuropil, and do not identify peptidergic in- and output compartments. Such information is however fundamental to screen for possible peptidergic network connections, a prerequisite to understand how the CNS controls the activity of peptidergic neurons at the synaptic level. We provide a precise 3D morphological description of peptidergic neurons in the thoracic and abdominal neuromeres of the Drosophila larva based on fasciclin-2 (Fas2) immunopositive tracts as landmarks. Comparing the Fas2 “coordinates” of projections of sensory or other neurons with those of peptidergic neurons, it is possible to identify candidate in- and output connections of specific peptidergic systems. These connections can subsequently be more rigorously tested. By immunolabeling and GAL4-directed expression of marker proteins, we analyzed the projections and compartmentalization of neurons expressing 12 different peptide genes, encoding approximately 75% of the neuropeptides chemically identified within the Drosophila CNS. Results are assembled into standardized plates which provide a guide to identify candidate afferent or target neurons with overlapping projections. In general, we found that putative dendritic compartments of peptidergic neurons are concentrated around the median Fas2 tracts and the terminal plexus. Putative peptide release sites in the ventral nerve cord were also more laterally situated. Our results suggest that i) peptidergic neurons in the Drosophila ventral nerve cord have separated in- and output compartments in specific areas, and ii) volume transmission is a prevailing way of peptidergic communication within the CNS. The data can further be useful to identify colocalized transmitters and receptors, and develop peptidergic neurons as new landmarks

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
    corecore