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ABSTRACT
Microsatellite loci are popular molecular markers due to their resolution in dis-
tinguishing individual genotypes. However, they have rarely been used to explore
the population dynamics in species with biphasic life cycles in which both haploid
and diploid stages develop into independent, functional organisms. We developed
microsatellite loci for the haploid–diploid red seaweed Gracilaria vermiculophylla,
a widespread non-native species in coastal estuaries of the Northern hemisphere.
Forty-two loci were screened for amplification and polymorphism. Nine of these loci
were polymorphic across four populations of the extant range with two to eleven
alleles observed. Mean observed and expected heterozygosities ranged from 0.265 to
0.527 and 0.317 to 0.387, respectively. Overall, these markers will aid in the study of
the invasive history of this seaweed and further studies on the population dynamics of
this important haploid–diploid primary producer.

Subjects Ecology, Evolutionary Studies, Genetics, Marine Biology
Keywords Complex life cycles, Biological invasions, Seaweed, Microsatellites, Haploid-diploid,
Gracilaria vermiculophylla

INTRODUCTION
In the last decade, genetic approaches to answering evolutionary and ecological questions

have become less expensive and more easily applied to non-model species (Allendorf,

Hohenlohe & Luikart, 2010; Guichoux et al., 2011). Microsatellites, or tandem repeats of two

to six nucleotides, are popular molecular markers due to their resolution in distinguishing

individual genotypes (Selkoe & Toonen, 2006) and their ability to describe patterns of

population connectivity across landscapes (Manel et al., 2003) and seascapes (Galindo,

Olson & Palumbi, 2006). Much of the literature focuses on organisms with single free-living

diploid stages (i.e., animals and higher plants). Yet, there are many species with both
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Table 1 Studies in which both the haploid and diploid stages of seaweeds and mosses were investigated to reveal patterns in genetic structure
and mating system.

Phylum Species Marker Type of study

Sosa et al. (1998) Rhodophyta Gelidium arbuscula Isozymes Genetic structure and
mating system

Sosa et al. (1998) Rhodophyta Gelidium canariensis Isozymes Genetic structure and
mating system

Engel et al. (1999) Rhodophyta Gracilaria gracilis Microsatellites Paternity analyses and
dispersal

van der Velde et al. (2001) Bryophyta Polytrichum formosum Microsatellites Paternity analyses and
dispersal

van der Strate et al. (2002) Chlorophyta Cladophoropsis membranacea Microsatellites Shorescape structure and
mating system

Engel, Destombe & Valero (2004) Rhodophyta Gracilaria gracilis Microsatellites Shorescape structure and
mating system

Guillemin et al. (2008a) and Guillemin et al.
(2008b)

Rhodophyta Gracilaria chilensis Microsatellites Genetic structure, mating
system and comparisons
between natural and
farmed populations

Szövényi, Ricca & Shaw (2009) Bryophyta Sphagnum lescurii Microsatellites Paternity analyses and
dispersal

Alström-Rapaport, Leskinen & Pamilo (2010) Chlorophyta Ulva intenstinalis Microsatellites Genetic structure and
mating system

Krueger-Hadfield et al. (2011) Rhodophyta Chondrus crispus Microsatellites Genetic structure and
mating system

Krueger-Hadfield et al. (2013) Rhodophyta Chondrus crispus Microsatellites Shorescape structure and
mating system

Couceiro et al. (2015) Ochrophyta Ecotcarpus crouaniorum Microsatellites Genetic structure and
mating system

Couceiro et al. (2015) Ochrophyta Ectocarpus siliculosus Microsatellites Genetic structure and
mating system

Krueger-Hadfield et al. (2015) Rhodophyta Chondrus crispus Microsatellites Paternity analyses and
dispersal

haploid and diploid stages in the same life cycle in which both ploidies undergo somatic

development and live as independent, functional organisms.

While theory predicts that selection should favor either diploidy or haploidy (Mable &

Otto, 1998), Hughes & Otto (1999) demonstrated the maintenance of both haploid and

diploid stages when the two stages occupy different ecological niches. However, there are

relatively few empirical tests of these alternative hypotheses (but see Destombe et al., 1992;

Thornber & Gaines, 2004; Guillemin et al., 2013), and for isomorphic species in which

ploidy is not easily identified through morphological traits, molecular markers will be

essential to advance research in this field. These same markers can additionally be used

to understand connectivity and demographic history in haploid–diploid populations.

Among marine haploid–diploid macroalgae, relatively few microsatellites have been

developed to address any of these issues (but see Table 1).
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Understanding the consequences of biphasic life cycles and land- or seascape features

on population structure is particularly relevant in light of the increasing frequency of

biological introductions. There are numerous examples of widespread, and putatively

invasive species, that have free-living haploid and diploid stages, including macroalgae

(e.g., Asparagopsis spp.; Andreakis et al., 2007), ferns (e.g., Lygodium spp.; Lott et al., 2003)

and mosses (e.g., Campylopus introflexus; Schirmel, Timler & Buchholz, 2010). Macroalgae,

or seaweeds, account for approximately 20% of the world’s introduced marine species

(Andreakis & Schaffelke, 2012) and a subset of these invasions are by species that are

exploited in their native range, either for the phycocolloid industry or as food products

(Williams & Smith, 2007).

The red seaweed Gracilaria vermiculophylla (Omhi) Papenfuss is native to the northwest

Pacific and, in the last 30–40 years, has spread throughout high to medium salinity

estuaries of the eastern North Pacific (Saunders, 2009), the western North Atlantic (Byers et

al., 2012) and the eastern North Atlantic (Weinberger et al., 2008; Guillemin et al., 2008a).

G. vermiculophylla transforms the ecosystems into which it is introduced through negative

impacts on native species (e.g., direct competition, Hammann et al., 2013), the addition

of structural complexity to soft-bottom systems (e.g., Nyberg, Thomsen & Wallentinus,

2009; Wright et al., 2014) and the alteration of community structure, species interactions

and detrital pathways (e.g., Byers et al., 2012). Previous studies of the population genetics

of G. vermiculophylla focused on the mitochondrial gene cytochrome b oxidase I (Kim,

Weinberger & Boo, 2010; Gulbransen et al., 2012), but mitochondrial genetics do not

necessarily predict the population genetics of the nuclear genome and cannot assess

patterns of ploidy and mating system. Thus, we developed nine polymorphic microsatellite

loci for G. vermiculophylla.

MATERIALS AND METHODS
A library of contigs for G. vermiculophylla was generated using the 454 next-generation

sequencing platform (Cornell University Life Sciences Core Laboratory Center) from a

single individual collected from Charleston, South Carolina, USA. For library preparation,

DNA was extracted using CTAB (Eichenberger, Gugerli & Schneller, 2000) and library

construction followed Hamilton et al. (1999). Dimeric to hexameric microsatellite repeats

were identified with the program MSATCOMMANDER, ver 1.0.8 (Faircloth, 2008) and

primers were designed using PRIMER 3 (Rozen & Skalesty, 2000) for contigs with at least

four sequences present in the library. Bioinformatics of these sequences was facilitated

by the APE package (Paradis, Claude & Strimmer, 2004) in R (R Development Core Team,

2014).

Total genomic DNA was isolated using 120 µL of a 10% Chelex solution (BioRad

Laboratories, Hercules, California, USA) in which approximately 1 cm of dried algal

tissue was heated at 95 ◦C for 30 min and vortexed intermittently (Walsh, Metzger

& Higuchi, 1991). Loci were amplified on a thermocycler (BioRad) as follows: 10 µL

final volume, 2 µL of stock DNA template, 0.5 units of GoTAQ Flexi-DNA Polymerase

(Promega, Madison, Wisconsin, USA), 1X buffer, 250 µM of each dNTP, 1.5 nM of MgCl2,
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Table 2 Characteristics of nine polymorphic microsatellite loci developed for Gracilaria vermiculophylla. Acc. No., GenBank accession number;
locus; motif; primer sequences; allele range; avg. error: TANDEM (Matschiner & Saltzburger, 2009) rounding errors for each microsatellite locus (the
authors of TANDEM suggest that good loci have an average rounding error which is below 10% of the repeat size); Ntall, total number of alleles. All
loci showed one-locus genetic determinism.

Locus Acc. No. Motif Primer sequence Allele range Avg. Error Ntall

Gverm 5276 KT232089 (AC)10 F: GGAGAGCAGCACGTTTTAGG
R: CTGCTTAGTTCCACGATCGAC

282–316 0.14 11

Gverm 6311 KT232090 (AG)9 F: GCGTCATTCCACTGAATGTG
R: GATGAACCTCAATGCCTCGT

203–223 0.17 6

Gverm 8036 KT232091 (AC)12 F: GCCCTTTTAAGGATGCAACA
R: GGGGTAAACGACCACAGAGA

213–251 0.14 5

Gverm 3003 KT232092 (AG)11 F: CATCTTGCTTCCTTGCTTCC
R: TTGAAAGCCGGAATTTATCG

198–230 0.11 4

Gverm 1203 KT232093 (AAG)8 F: CTCCTGGTGCACAAGCAATA
R: ACATTCTGCGCACCTTTCTT

284–308 0.12 4

Gverm 1803 KT232094 (AC)11 F: GCGTGCACGATGTCTACACT
R: GACAGCAACAAGTGGGGTTT

352–356 0.07 3

Gverm 804 KT232095 (AAG)8 F: TGTAGGATTGCTCTCCTGGTG
R: CAGGCTGGCCAAAATAACAT

182–188 0.16 3

Gverm 10367 KT232096 (AG)8 F: GCTGAGAAATGAAGCGAAGG
R: GCAAACCTGCCTTGTTTGTT

198–200 0.07 2

Gverm 2790 KT232097 (AATGC)5 F: GAACAATGCGGGAAAACATT
R: GGAAGAGGCTCAAAAGCAGA

262–267 0.16 2

150 nM of fluorescently-labeled forward primer, 100 nM of unlabeled forward primer

and 250 nM of unlabeled reverse primer. The PCR program included 2 min at 95 ◦C, 30

cycles of 30 s at 95 ◦C, 30 s at 55 ◦C and 30 s at 72 ◦C, and a final 5 min at 72 ◦C. One µL

of each PCR product was added to 10 µL of loading buffer containing 0.35 µL of size

standard (GeneScan500 Liz; Applied Biosystems, Foster City, California, USA). Samples

were electrophoresed on an ABI 3130xL genetic analyzer equipped with 36 cm capillaries

(Applied Biosystems). Alleles were scored manually using GENEMAPPER ver. 4 (Applied

Biosystems) and allele sizes were binned with TANDEM ver. 1.08 software (Matschiner &

Saltzburger, 2009; Krueger-Hadfield et al., 2013).

We screened a total of 42 primer pairs for amplification and polymorphism in

G. vermiculophylla (Table 2, Table S1). For the amplifiable loci that also showed poly-

morphism (nine total, see “Results and Discussion”), we verified single locus genetic

determinism (SGLD). Loci were in SLGD if known haploids produced a single allele and

diploids produced either one or two alleles in their homozygous or heterozygous state,

respectively. We verified SGLD in a subset of known haploid gametophytes (n = 28) and

diploid tetrasporophytes (n = 30) collected at Elkhorn Slough, California, USA (Table 3,

Fig. S1). Elkhorn Slough was the only population for which ploidy was determined

by reproductive structures and for which we had known haploids and diploids for

genotyping.

The frequency of null alleles was estimated in the haploid subpopulation from Elkhorn

Slough as well as diploid tetrasporophytes for each of the four populations (Table 3).

It is possible to calculate the null allele frequency directly in the haploids based on the

Kollars et al. (2015), PeerJ, DOI 10.7717/peerj.1159 4/11

https://peerj.com
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232089
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232089
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232089
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232089
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232089
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232089
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232089
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232089
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232090
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232090
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232090
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232090
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232090
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232090
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232090
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232090
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232091
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232091
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232091
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232091
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232091
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232091
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232091
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232091
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232092
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232092
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232092
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232092
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232092
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232092
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232092
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232092
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232093
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232093
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232093
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232093
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232093
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232093
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232093
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232093
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232094
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232094
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232094
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232094
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232094
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232094
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232094
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232094
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232095
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232095
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232095
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232095
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232095
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232095
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232095
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232095
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232096
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232096
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232096
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232096
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232096
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232096
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232096
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232096
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232097
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232097
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232097
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232097
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232097
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232097
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232097
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT232097
http://dx.doi.org/10.7717/peerj.1159/supp-2
http://dx.doi.org/10.7717/peerj.1159/supp-2
http://dx.doi.org/10.7717/peerj.1159/supp-1
http://dx.doi.org/10.7717/peerj.1159/supp-1
http://dx.doi.org/10.7717/peerj.1159


Table 3 Location of the four populations used to test for polymorphism in newly characterized microsatellite loci in Gracilaria vermicu-
lophylla. The region, range (native or non-native), latitude, longitude, sampling date, collector* and ploidy determination (using reproductive
phenology or microsatellite genotype) are provided.

Population Region Range Latitude Longitude Date Collector Ploidy
determination

Akkeshi, Japan NW Pacific Native 43.04774 144.9498 25 Aug 10, 31 Jul 12 NMK, KH, KM, AP, MS Genotype

Elkhorn Slough California,
USA

NE Pacific Non-native 36.50447 −121.4513 3 Nov 13 SAKH, BFK, TDK, BH Genotype,
phenology

Fort Johnson SC, USA NW Atlantic Non-native 32.7513 −79.900 11 Dec 13 CEG Genotype

Nordstrand, Germany North Sea Non-native 54.454571 8.874846 24 Mar 10 MH Genotype

Notes.
Collector abbreviations: NMK, NM Kollars; KH, K Honda; KM, K Momota; AP, A Pansch; MS, M Sato; SAKH, SA Krueger-Hadfield; BFK, BF Krueger; TDK, TD
Krueger; BH, B Hughes; CEG, CE Gerstenmaier; MH:, M Hammann.

number of non-amplification events, after discounting technical errors. For diploid

tetrasporophytes, we used a maximum likelihood estimator (ML-NullFreq: Kalinowski

& Taper, 2006).

Next, we screened loci for short allele dominance (Wattier et al., 1998). The presence of

short allele dominance is rarely tested during microsatellite development, even though it

can result in artificial heterozygote deficiencies. In contrast to null alleles, primer binding is

successful, but the larger allele is not amplified due to the preferential amplification of the

smaller allele. Wattier et al. (1998) demonstrated an analytical method to detect short allele

dominance using linear models. If a regression of allele-specific Fis (inbreeding coefficient)

statistics on allele size reveals a significant negative slope, then short allele dominance may

be expected. We determined three to four allele size classes per locus and performed linear

regressions using the STATS package in R (R Development Core Team, 2014).

To provide preliminary assessment of the genotypic and genetic diversity one can gain

from these loci, we genotyped diploid tetrasporophytes from one native and three non-

native populations of G. vermiculophylla (Table 3). Diploids were identified based either on

reproductive phenology (Elkhorn) or microsatellite genotype (after assuring SGLD) if at

least one locus was heterozygous (Akkeshi, Fort Johnson and Nordstrand, Table 3).

We calculated expected allelic richness using rarefaction in order to account for

differences in sample size (HP-Rare; Kalinowski, 2005). Observed (HO) and expected

heterozygosities (HE) were calculated using GenAlEx, ver. 6.501 (Peakall & Smouse,

2006; Peakall & Smouse, 2012). Tests for Hardy–Weinberg equilibrium and F-statistics were

performed in FSTAT, ver. 2.9.3.2 (Goudet, 1995). Fis was calculated for each locus and over

all loci according to Weir & Cockerham (1984) and significance (at the adjusted nominal

level of 0.001) was tested by running 1,000 permutations of alleles among individuals

within samples. We also tested for linkage disequilibrium in each population using

GENEPOP, ver. 4.2.2 (Rousset, 2008), with 1,000 permutations followed by Bonferroni

correction for multiple comparisons (Sokal & Rohlf, 1995).
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RESULTS AND DISCUSSION
Of the 42 loci screened, 16 did not amplify for G. vermiculophylla even after several

PCR modifications (Table S1). Of the remaining 26 loci, four loci exhibited multi-peak

profiles and were discarded from further use, 13 loci were considered monomorphic

(Table S1), and nine loci showed polymorphism (Table 2). The nine polymorphic loci

exhibited SLGD in which known haploids always exhibited one allele. The low number

of polymorphic loci revealed from this screening process is consistent with previous

efforts to develop microsatellite loci for some seaweeds (e.g., Varlea-Álvarez et al., 2011;

Arnaud-Haond et al., 2013).

The frequency of null alleles was zero at all loci except Gverm 1803 and Gverm 2790

in which the frequencies were both 0.019 in the haploids at Elkhorn Slough

(Table S2). The only evidence of null alleles in the diploids from Elkhorn Slough was

at locus Gverm 1803, with a maximum likelihood estimated frequency of 0.115. The

discrepancy between the haploid and diploid estimates is likely due to assumptions

underlying the maximum likelihood estimators implemented in software like HP-Rare

(Kalinowski, 2005), such as random mating. Krueger-Hadfield et al. (2013) demonstrated a

strong bias in the estimates of null allele frequency when using these maximum likelihood

estimators in macroalgal populations that have undergone non-random mating. The

higher frequencies of null alleles (0.115–0.207) in the Akkeshi diploid subpopulation

were most likely driven by a violation of these assumptions as well, though empirical

estimates in haploid subpopulations are warranted. Nevertheless, the low frequency of null

alleles and lack of evidence for short-allele dominance (all regression p-values were >0.2,

Table S3), suggest that observed heterozygote deficiencies using these loci will be due to the

mating system or spatial substructuring (Guillemin et al., 2008b; Krueger-Hadfield et al.,

2011; Krueger-Hadfield et al., 2013).

Previous studies have used microsatellite loci to distinguish among individual clones

and to describe the genetic diversity and the mating systems of seaweed populations

despite low levels of polymorphism (e.g., Guillemin et al., 2008b; Arnaud-Haond et al.,

2013). In the current study, the nine polymorphic markers described genetic variability

in four populations sampled across the extant distribution of G. vermiculophylla. Overall,

there was little evidence for linkage disequilibrium after Bonferroni correction (Table S4).

Additionally, allelic diversity was comparable among the one native and three non-native

sites we sampled, but Fis varied considerably (summary in Table 4; per locus statistics

in Table S5). Together, these results suggest that unique demographic and evolutionary

processes could be operating between native and non-native ranges and within each

population, but more detailed sampling is needed to address these patterns.

In summary, we have developed and characterized microsatellite markers for the

haploid–diploid red seaweed G. vermiculophylla. These loci have the resolution to dis-

tinguish individual thalli and will aid studies on the invasive history of G. vermiculophylla,

as well as the evolutionary ecology of rapidly spreading populations and mating system

shifts in organisms that have biphasic life cycles with free-living haploid and diploid stages

(i.e., macroalgae, ferns, mosses and some fungi).
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Table 4 Genetic features of four populations of Gracilaria vermicuolphylla. These include: the sample
size, N; the diploid genotypic richness, NA, + standard error (SE); mean allelic richness, AE, based on the
smallest sample size of 46 alleles (23 diploid individuals) + SE; mean observed heterozygosity, HO, + SE;
mean expected heterozygosity, HE, + SE; inbreeding oefficient, Fis, multilocus and per locus estimates.

Statistics Akkeshi Elkhorn slough Fort Johnson Nordstrand

N 31 30 38 23

NA 3.2 ± 0.5 2.2 ± 0.4 2.0 ± 0.2 1.9 ± 0.2

AE 3.1 ± 0.4 2.2 ± 0.3 2.0 ± 0.2 1.9 ± 0.2

HO 0.265 ± 0.060 0.311 ± 0.089 0.520 ± 0.110 0.527 ± 0.125

HE 0.374 ± 0.079 0.317 ± 0.084 0.387 ± 0.077 0.352 ± 0.079

Fis 0.294* 0.017 −0.350*
−0.512*

Fis per locus

Gverm 5276 0.484* 0.120 −0.209 −0.492

Gverm 6311 0.435* 0.140 −0.267 −0.048

Gverm 8036 0.334 NA −0.445*
−0.217

Gverm 3003 0.529 −0.121 −0.138 −0.553

Gverm 1203 −0.15 −0.206 −0.310 −0.508

Gverm 1803 0.569* 0.460 −0.696* NA

Gverm 804 −0.278 −0.206 −0.310 −0.508

Gverm 10367 −0.017 NA NA NA

Gverm 2790 NA NA NA −0.913*

Notes.
* p < 0.001, adjusted nominal value.
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