24 research outputs found

    High Trapped Fields in C-doped MgB2 Bulk Superconductors Fabricated by Infiltration and Growth Process.

    Get PDF
    The grain boundaries in superconducting MgB2 are known to form effective magnetic flux pinning sites and, consequently, bulk MgB2 containing a fine-grain microstructure fabricated from nanoscale Mg and B precursor powders exhibits good magnetic field-trapping performance below 20 K. We report here that the trapped field of MgB2 bulk superconductors fabricated by an infiltration and growth process to yield a dense, pore-free microstructure, can be enhanced significantly by carbon-doping, which increases intra-band scattering within the superconducting grains. A maximum trapped field of 4.15 T has been measured at 7.5 K at the centre of a five-sample stack of Mg(B1-xiCxi)2 bulk superconductors processed by infiltration and growth, which not only represents a ~40% increase in trapped field observed compared to undoped bulk MgB2, but also is the highest trapped field reported to date in MgB2 samples processed under ambient pressure. The trapped field is observed to decay at a rate of <2%/day at 10 K, which suggests that bulk MgB2 superconductors fabricated using the infiltration and growth technique can be used potentially to generate stable, high magnetic fields for a variety of engineering applications

    Re-infection with a different SARS-CoV-2 clade and prolonged viral shedding in a hematopoietic stem cell transplantation patient

    Get PDF
    Immunocompromised patients who have a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection pose many clinical and public health challenges. We describe the case of a hematopoietic stem cell transplantation patient with lymphoma who had a protracted illness requiring three consecutive hospital admissions. Whole genome sequencing confirmed two different SARS-CoV-2 clades. Clinical management issues and the unanswered questions arising from this case are discussed

    Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.

    Get PDF
    BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Polymer Mechanochemistry: Manufacturing Is Now a Force to Be Reckoned With

    No full text
    Polymer mechanochemistry is an exciting, rapidly developing field; however, it lacks detailed studies on the link between lab-scale mechanical activation and how the chemistry will translate to the complex flows and forces experienced during fluid-based molding and additive manufacturing techniques. This is especially important for polymers, which are the functional material of choice for applications such as organic electronics, biological scaffolds, and drug-delivery coatings, because there is the highest likelihood of mechanical activation. This review examines the most recent development in force-sensitive molecules known as mechanophores by re-categorizing them by material phase and method of activation and discussing the forces involved in such flow systems and where activation may occur in relevant manufacturing processes. The overall finding of this review is that for real, practical, and scalable industrial applications of these exciting mechanochemical materials, there must be a concurrent study of the forces experienced and their effect on the detailed chemistry. Mechanochemistry is the application of mechanical force to drive chemical reactions. It is widely used in industry to activate small molecules (e.g., ball milling). However, polymer mechanochemistry has not yet transitioned into industry even though lab-based breakthroughs have revealed chemical pathways unavailable via traditional thermal or optical activation methods. The research is motivated by potential benefits in green chemistry and smart materials for the development of materials for catalysis, drug-release technologies, and sensors. This aligns closely with the United Nations Sustainable Development Goals of “responsible consumption and production” and “sustainable cities and communities.” This review focuses on the goal of “industry, innovation, and infrastructure” by creating a link between research into molecular design, flow fields in polymer processing, and industrial techniques to bring together diverse aspects of mechanochemistry and enable targeted industrial impact. The field of polymer mechanochemistry is rapidly expanding through the design of force-sensitive species known as mechanophores. However, there is a lack of understanding of the translation of the chemistry from lab-scale mechanical activation to the complex flows experienced during manufacturing. This review recategorizes the field with a particular focus on recent developments in mechanophore design and activation. The cross-discipline review then examines flow fields and processing technologies that need to be understood in the design of mechanochemistry for manufacturing
    corecore