23 research outputs found
HIPK2 deficiency causes chromosomal instability by cytokinesis failure and increases tumorigenicity
HIPK2, a cell fate decision kinase inactivated in several human cancers, is thought to exert its oncosuppressing activity through its p53-dependent and -independent apoptotic function. However, a HIPK2 role in cell proliferation has also been described. In particular, HIPK2 is required to complete cytokinesis and impaired HIPK2 expression results in cytokinesis failure and tetraploidization. Since tetraploidy may yield to aneuploidy and chromosomal instability (CIN), we asked whether unscheduled tetraploidy caused by loss of HIPK2 might contribute to tumorigenicity. Here, we show that, compared to Hipk2+/+ mouse embryo fibroblasts (MEFs), hipk2-null MEFs accumulate subtetraploid karyotypes and develop CIN. Accumulation of these defects inhibits proliferation and spontaneous immortalization of primary MEFs whereas increases tumorigenicity when MEFs are transformed by E1A and Harvey-Ras oncogenes. Upon mouse injection, E1A/Ras-transformed hipk2-null MEFs generate tumors with genetic alterations resembling those of human cancers derived by initial tetraploidization events, such as pancreatic adenocarcinoma. Thus, we evaluated HIPK2 expression in different stages of pancreatic transformation. Importantly, we found a significant correlation among reduced HIPK2 expression, high grade of malignancy, and high nuclear size, a marker of increased ploidy. Overall, these results indicate that HIPK2 acts as a caretaker gene, whose inactivation increases tumorigenicity and causes CIN by cytokinesis failure
Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
Tissue Engineering of Canine Cartilage from Surgically Debrided Osteochondritis Dissecans Fragments.
This study in dogs explored the feasibility of using cartilage fragments removed and discarded during routine palliative surgery for osteochondritis dissecans (OCD) as a source of primary chondrocytes for scaffold-free cartilage tissue-engineering. Primary chondrocytes were obtained from three OCD donors and one age-matched healthy articular cartilage (HAC) donor. After monolayer expansion of primary cells, a three-dimensional spherical suspension culture was implemented. Following this stage, cells were seeded at a high density into custom-made agarose molds that allowed for size and shape-specific constructs to be generated via a method of cellular self-assembling in a scaffold-free environment. Fifty-eight neocartilage constructs were tissue-engineered using this methodology. Neocartilage constructs and native cartilage from shoulder joint were subjected to histological, mechanical, and biochemical testing. OCD and HAC chondrocytes-sourced constructs had uniformly flat morphology and histology consistent with cartilage tissue. Constructs sourced from OCD chondrocytes were 1.5-times (32%) stiffer in compression and 1.3 times (23%) stronger in tension than constructs sourced from HAC chondrocytes and only 8.7-times (81%) less stiff in tension than native tissue. Constructs from both cell sources consistently had lower collagen content than native tissue (22.9%/dry weight [DW] for OCD and 4.1%/DW for HAC vs. 51.1%/DW native tissue). To improve the collagen content and mechanical properties of neocartilage, biological and mechanical stimuli, and thyroid hormone (tri-iodothyronine) were applied to the chondrocytes during the self-assembling stage in two separate studies. A 2.6-fold (62%) increase in compressive stiffness was detected with supplementation of biological stimuli alone and 5-fold (81%) increase with combined biological and mechanical stimuli at 20% strain. Application of thyroid hormone improved collagen content (1.7-times, 33%), tensile strength (1.8-times, 43%), and stiffness (1.3-times, 21%) of constructs, relative to untreated controls. Collectively, these data suggest that OCD chondrocytes can serve as a reliable cell source for cartilage tissue-engineering and that canine chondrocytes respond favorably to biological and mechanical stimuli that have been shown effective in chondrocytes from other animal species, including humans
HIPK2 Controls Cytokinesis and Prevents Tetraploidization by Phosphorylating Histone H2B at the Midbody
Failure in cytokinesis, the final step in cell division, by generating tetra- and polyploidization promotes chromosomal instability, a hallmark of cancer. Here we show that HIPK2, a kinase involved in cell fate decisions in development and response to stress, controls cytokinesis and prevents tetraploidization through its effects on histone H2B. HIPK2 binds and phosphorylates histone H2B at S14 (H2B-S14 P), and the two proteins colocalize at the midbody. HIPK2 depletion by targeted gene disruption or RNA interference results in loss of H2B-S14 P at the midbody, prevention of cell cleavage, and tetra- and polyploidization. In HIPK2 null cells, restoration of wild-type HIPK2 activity or expression of a phosphomimetic H2B-S14D derivative abolishes cytokinesis defects and rescues cell proliferation, showing that H2B-S14 P is required for a faithful cytokinesis. Overall, our data uncover mechanisms of a critical HIPK2 function in cytokinesis and in the prevention of tetraploidization. © 2012 Elsevier Inc