35 research outputs found

    Δ9-tetrahydrocannabinol reverses TNFα-induced increase in airway epithelial cell permeability through CB2 receptors

    Get PDF
    Despite pharmacological treatment, bronchial hyperresponsiveness continues to deteriorate as airway remodelling persists in airway inflammation. Previous studies have demonstrated that the phytocannabinoid Δ9-tetrahydrocannabinol (THC)reverses bronchoconstriction with an anti-inflammatory action. The aim of this study was to investigate the effects of THC on bronchial epithelial cell permeability after exposure to the pro-inflammatory cytokine, TNFα. Calu-3 bronchial epithelial cells were cultured at air-liquid interface. Changes in epithelial permeability were measured using transepithelial electrical resistance(TEER), then confirmed with a paracellular permeability assay and expression of tight junction proteins by Western blotting.Treatment with THC prevented the TNFα-induced decrease in TEER and increase in paracellular permeability. Cannabinoid CB1 and CB2 receptor-like immunoreactivity was found in Calu-3 cells. Subsequent experiments revealed that pharmacological blockade of CB2, but not CB1 receptor inhibited the THC effect. Selective stimulation of CB2 receptors displayed a similar effect to that of THC. TNFα decreased expression of the tight junction proteins occludin and ZO-1, which was prevented by pre-incubation with THC.These data indicate that THC prevents cytokine-induced increase in airway epithelial permeability through CB2 receptor activation. This highlights that THC, or other cannabinoid receptor ligands, could be beneficial in the prevention of inflammation induced changes in airway epithelial cell permeability, an important feature of airways diseases

    Endocannabinoids modulate human blood-brain barrier permeabilityin vitro

    Get PDF
    Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was modelled by oxygen-glucose deprivation (OGD) and permeability was measured by transepithelial electrical resistance. Endocannabinoids or endocannabinoid-like compounds were assessed for their ability to modulate baseline permeability or OGD-induced hyperpermeability. Target sites of action were investigated using receptor antagonists and subsequently identified with real-time PCR. Key Results Anandamide (10 μM) and oleoylethanolamide (OEA, 10 μM) decreased BBB permeability (i.e. increased resistance). This was mediated by cannabinoid CB2 receptors, transient receptor potential vanilloid 1 (TRPV1) channels, calcitonin gene-regulated peptide (CGRP) receptor (anandamide only) and PPARα (OEA only). Application of OEA, palmitoylethanolamide (both PPARα mediated) or virodhamine (all 10 μM) decreased the OGD-induced increase in permeability during reperfusion. 2-Arachidonoyl glycerol, noladin ether and oleamide did not affect BBB permeability in normal or OGD conditions. N-arachidonoyl-dopamine increased permeability through a cytotoxic mechanism. PPARα and γ, CB1 receptors, TRPV1 channels and CGRP receptors were expressed in both cell types, but mRNA for CB2 receptors was only present in astrocytes. Conclusion and Implication The endocannabinoids may play an important modulatory role in normal BBB physiology, and also afford protection to the BBB during ischaemic stroke, through a number of target sites

    Endocannabinoids-related compounds in gastrointestinal diseases

    Get PDF
    The endocannabinoid system (ECS) is an endogenous signalling pathway involved in the control of several gastrointestinal (GI) functions at both peripheral and central levels. In recent years, it has become apparent that the ECS is pivotal in the regulation of GI motility, secretion and sensitivity, but endocannabinoids (ECs) are also involved in the regulation of intestinal inflammation and mucosal barrier permeability, suggesting their role in the pathophysiology of both functional and organic GI disorders. Genetic studies in patients with irritable bowel syndrome (IBS) or inflammatory bowel disease have indeed shown significant associations with polymorphisms or mutation in genes encoding for cannabinoid receptor or enzyme responsible for their catabolism, respectively. Furthermore, ongoing clinical trials are testing EC agonists/antagonists in the achievement of symptomatic relief from a number of GI symptoms. Despite this evidence, there is a lack of supportive RCTs and relevant data in human beings, and hence, the possible therapeutic application of these compounds is raising ethical, political and economic concerns. More recently, the identification of several EC-like compounds able to modulate ECS function without the typical central side effects of cannabino-mimetics has paved the way for emerging peripherally acting drugs. This review summarizes the possible mechanisms linking the ECS to GI disorders and describes the most recent advances in the manipulation of the ECS in the treatment of GI diseases

    Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon

    Get PDF
    Objective: We sought to quantify the anti-inflammatory effects of two cannabinoid drugs, cannabidiol (CBD) and palmitoylethanolamide (PEA), in cultured cell lines and compared this effect with experimentally inflamed explant human colonic tissue. These effects were explored in acutely and chronically inflamed colon, using inflammatory bowel disease and appendicitis explants. Design: Caco-2 cells and human colonic explants collected from elective bowel cancer, inflammatory bowel disease (IBD) or acute appendicitis resections, and were treated with the following drug treatments: vehicle, an inflammatory protocol of interferon γ (IFNγ) and tumour necrosis factor α (TNFα; 10 ng/ml), inflammation and PEA (10 µM), inflammation and CBD (10 µM), and PEA or CBD alone, CBD or vehicle were added simultaneously with IFNγ. Nine intracellular signalling phosphoproteins were determined by multiplex. Inflammatory cytokine secretion was determined using ELISA. Receptor mechanisms were investigated using antagonists for CB1, CB2, PPARα, PPARγ, TRPV1 and GPR55. Results: IFNγ and TNFα treatment increased phosphoprotein and cytokine levels in Caco-2 cultures and colonic explants. Phosphoprotein levels were significantly reduced by PEA or CBD in Caco-2 cultures and colonic explants. CBD and PEA prevented increases in cytokine production in explant colon, but not in Caco-2 cells. CBD effects were blocked by the CB2 antagonist AM630 and TRPV1 antagonist SB366791. PEA effects were blocked by the PPARα antagonist GW6471. PEA and CBD were anti- inflammatory in IBD and appendicitis explants. Conclusion: PEA and CBD are anti-inflammatory in the human colon. This effect is not seen in cultured epithelial cells. Appropriately sized clinical trials should assess their efficac

    In vitro studies of huam intestinal permeability and modulation

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Gut microbiome, obesity, and metabolic dysfunction

    No full text
    The prevalence of obesity and related disorders such as metabolic syndrome has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. Dietary composition and caloric intake appear to swiftly regulate intestinal microbial composition and function. As most findings in this field of research are based on mouse studies, the relevance to human biology requires further investigation

    Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability.

    No full text
    Activation of cannabinoid receptors decreases emesis, inflammation, gastric acid secretion, and intestinal motility. However, the effects of cannabinoids on intestinal permeability have not yet been established. The aim of the present study is to examine the effects of cannabinoids on intestinal permeability in an in vitro model. Caco-2 cells were grown until fully confluent on inserts in 12-well plates. Transepithelial electrical resistance (TEER) measurements were made as a measure of permeability. EDTA (50 μM) was applied to reversibly increase permeability (reduce TEER). The effects of cannabinoids on permeability in combination with EDTA, or alone, were assessed. Potential target sites of action were investigated using antagonists of the cannabinoid (CB)1 receptor, CB2 receptor, transient receptor potential vanilloid subtype 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)γ, PPARα, and a proposed cannabinoid receptor. When applied to the apical or basolateral membrane of Caco-2 cells, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) enhanced the speed of recovery of EDTA-induced increased permeability. This effect was sensitive to cannabinoid CB1 receptor antagonism only. Apical application of endocannabinoids caused increased permeability, sensitive to cannabinoid CB1 receptor antagonism. By contrast, when endocannabinoids were applied basolaterally, they enhanced the recovery of EDTA-induced increased permeability, and this involved additional activation of TRPV1. All cannabinoids tested increased the mRNA of the tight junction protein zona occludens-1, but only endocannabinoids also decreased the mRNA of claudin-1. These findings suggest that endocannabinoids may play a role in modulating intestinal permeability and that plant-derived cannabinoids, such as THC and CBD, may have therapeutic potential in conditions associated with abnormally permeable intestinal epithelium
    corecore