5,849 research outputs found

    Saturated Critical Heat Flux in a Multi-Microchannel Heat Sink Fed by a Split Flow System

    Get PDF
    An extensive experimental campaign has been carried out for the measurement of saturated critical heat flux in a multi-microchannel copper heat sink. The heat sink was formed by 29 parallel channels that were 199 μm wide and 756 μm deep. In order to increase the critical heat flux and reduce the two-phase pressure drop, a split flow system was implemented with one central inlet at the middle of the channels and two outlets at either end. The base critical heat flux was measured using three HFC Refrigerants (R134a, R236fa and R245fa) for mass fluxes ranging from 250 to 1500 kg/m2 s, inlet subcoolings from −25 to −5 K and saturation temperatures from 20 to 50 °C. The parametric effects of mass velocity, saturation temperature and inlet subcooling were investigated. The analysis showed that significantly higher CHF was obtainable with the split flow system (one inlet–two outlets) compared to the single inlet–single outlet system, providing also a much lower pressure drop. Notably several existing predictive methods matched the experimental data quite well and quantitatively predicted the benefit of higher CHF of the split flow

    Zinc(II) coordination polymers with pseudopeptidic ligands

    No full text
    Two new phenyl-bridged pseudopeptidic ligands have been prepared and structurally characterised. The nature of the ligands’ substituents play an important role in the nature of the solid state structure yielding either hydrogen bonded linked sheets of molecules or infinite hydrogen bonded networks. Both these ligands were reacted with a range of zinc(II) salts with the aim of synthesising coordination polymers and networks and exploring the role that anions could play in determining the final structure. The crystal structures of four of these systems (with ZnSO4 and ZnBr2) were determined; in one case, a 3D coordination network was obtained where zinc–ligand coordination bonds generated the 3D arrangements. Three other 3D networks were obtained by anion-mediated hydrogen bonding of coordination 1D chains or 2D sheets. These four very different structures highlight the important role played by the ligands’ substituents and the counteranions present in the system

    Optical counterpart to Swift J0243.6+6124

    Full text link
    Swift J0243.6+6124 was discovered during a giant X-ray outburst in October 2017. While there are numerous studies in the X-ray band, very little is known about the optical counterpart. We have performed an spectral and photometric analysis of the optical counterpart of this intriguing source. We find that the optical counterpart to Swift J0243.6+6124 is a V = 12.9, O9.5Ve star, located at a distance of ∼5\sim5 kpc. The optical extinction in the direction of the source is AV=3.6A_V=3.6 mag. The rotational velocity of the O-type star is 210 km s−1^{-1}. The long-term optical variability agrees with the growth and subsequent dissipation of the Be circumstellar disk after the giant X-ray outburst. The optical and X-ray luminosity are strongly correlated during the outburst, suggesting a common origin. We did not detect short-term periodic variability that could be associated with nonradial pulsations from the Be star photosphere.Comment: Wrong label in Fig 4 correcte

    Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime

    Full text link
    The Be X-ray binary EXO 2030+375 was in an extended low luminosity state during most of 2016. We observed this state with NuSTAR and Swift, supported by INTEGRAL observations as well as optical spectroscopy with the NOT. We present a comprehensive spectral and timing analysis of these data here to study the accretion geometry and investigate a possible onset of the propeller effect. The H-alpha data show that the circumstellar disk of the Be-star is still present. We measure equivalent widths similar to values found during more active phases in the past, indicating that the low-luminosity state is not simply triggered by a smaller Be disk. The NuSTAR data, taken at a 3-78 keV luminosity of ~6.8e35 erg/s (for a distance of 7.1 kpc), are well described by standard accreting pulsar models, such as an absorbed power-law with a high-energy cutoff. We find that pulsations are still clearly visible at these luminosities, indicating that accretion is continuing despite the very low mass transfer rate. In phase-resolved spectroscopy we find a peculiar variation of the photon index from ~1.5 to ~2.5 over only about 3% of the rotational period. This variation is similar to that observed with XMM-Newton at much higher luminosities. It may be connected to the accretion column passing through our line of sight. With Swift/XRT we observe luminosities as low as 1e34 erg/s during which the data quality did not allow us to search for pulsations, but the spectrum is much softer and well described by either a blackbody or soft power-law continuum. This softer spectrum might be due to the fact that accretion has been stopped by the propeller effect and we only observe the neutron star surface cooling.Comment: 11 pages, 6 figures, accepted for publication in A&A (v2 including language edits

    High-J v=0 SiS Maser Emission in IRC+10216: A New Case of Infrared Overlaps

    Get PDF
    We report on the first detection of maser emission in the J=11-10, J=14-13 and J=15-14 transitions of the v=0 vibrational state of SiS toward the C-rich star IRC+10216. These masers seem to be produced in the very inhomogeneous region between the star and the inner dust formation zone, placed at 5-7 R*, with expansion velocities below 10 km/s. We interpret the pumping mechanism as due to overlaps between v=1-0 ro-vibrational lines of SiS and mid-IR lines of C2H2, HCN and their 13C isotopologues. The large number of overlaps found suggests the existence of strong masers for high-J v=0 and v=1 SiS transitions, located in the submillimeter range. In addition, it could be possible to find several rotational lines of the SiS isotopologues displaying maser emission.Comment: 4 pages, 1 figure, published in the ApJ Letter

    The Second INTEGRAL AGN Catalogue

    Full text link
    The INTEGRAL mission provides a large data set for studying the hard X-ray properties of AGN and allows testing of the unified scheme for AGN. We present analysis of INTEGRAL IBIS/ISGRI, JEM-X, and OMC data for 199 AGN supposedly detected by INTEGRAL above 20 keV. The data analysed here allow a significant spectral extraction on 148 objects and an optical variability study of 57 AGN. The slopes of the hard X-ray spectra of Seyfert 1 and Seyfert~2 galaxies are found to be consistent within the uncertainties, whereas higher cut-off energies and lower luminosities are measured for the more absorbed / type 2 AGN. The intermediate Seyfert 1.5 objects exhibit hard X-ray spectra consistent with those of Seyfert 1. When applying a Compton reflection model, the underlying continua appear the same in Seyfert 1 and 2 with photon index 2, and the reflection strength is about R = 1, when assuming different inclination angles. A significant correlation is found between the hard X-ray and optical luminosity and the mass of the central black hole in the sense that the more luminous objects appear to be more massive. There is also a general trend toward the absorbed sources and type 2 AGN having lower Eddington ratios. The black holemass appears to form a fundamental plane together with the optical and X-ray luminosity of the form Lv being proportional to Lx^0.6 M^0.2, similar to that found between radio luminosity Lr, Lx, and M. The unified model for Seyfert galaxies seems to hold, showing in hard X-rays that the central engine is the same in Seyfert 1 and 2, but seen under different inclination angles and absorption. (Abridged)Comment: 26 pages, 16 figures, accepted for publication in A&A. Corrections by language editor included in version

    Electron transport properties of sub-3-nm diameter copper nanowires

    Get PDF
    Density functional theory and density functional tight-binding are applied to model electron transport in copper nanowires of approximately 1 nm and 3 nm diameters with varying crystal orientation and surface termination. The copper nanowires studied are found to be metallic irrespective of diameter, crystal orientation and/or surface termination. Electron transmission is highly dependent on crystal orientation and surface termination. Nanowires oriented along the [110] crystallographic axis consistently exhibit the highest electron transmission while surface oxidized nanowires show significantly reduced electron transmission compared to unterminated nanowires. Transmission per unit area is calculated in each case, for a given crystal orientation we find that this value decreases with diameter for unterminated nanowires but is largely unaffected by diameter in surface oxidized nanowires for the size regime considered. Transmission pathway plots show that transmission is larger at the surface of unterminated nanowires than inside the nanowire and that transmission at the nanowire surface is significantly reduced by surface oxidation. Finally, we present a simple model which explains the transport per unit area dependence on diameter based on transmission pathways results

    A Detailed Analysis of the Dust Formation Zone of IRC+10216 Derived from Mid-IR Bands of C2H2 and HCN

    Get PDF
    A spectral survey of IRC+10216 has been carried out in the range 11 to 14 um with a spectral resolution of about 4 km s^-1. We have identified a forest of lines in six bands of C2H2 involving the vibrational states from the ground to 3nu5 and in two bands of HCN, involving the vibrational states from the ground up to 2nu2. Some of these transitions are observed also in H13CCH and H13CN. We have estimated the kinetic, vibrational, and rotational temperatures, and the abundances and column densities of C2H2 and HCN between 1 and 300 R* (1.5E16 cm) by fitting about 300 of these ro-vibrational lines. The envelope can be divided into three regions with approximate boundaries at 0.019 arcsec (the stellar photosphere), 0.1 arcsec (the inner dust formation zone), and 0.4 arcsec (outer dust formation zone). Most of the lines might require a large microturbulence broadening. The derived abundances of C2H2 and HCN increase by factors of 10 and 4, respectively, from the innermost envelope outwards. The derived column densities for both C2H2 and HCN are 1.6E19 cm^-2. Vibrational states up to 3000 K above ground are populated, suggesting pumping by near-infrared radiation from the star and innermost envelope. Low rotational levels can be considered under LTE while those with J>20-30 are not thermalized. A few lines require special analysis to deal with effects like overlap with lines of other molecules.Comment: 8 pages, 16 figures, 2 machine-readable tables, accepted in the Astrophysical Journa

    SimulaciĂłn mediante ordenador de movimientos bidimensionales en medios resistentes

    Get PDF
    We have accomplished a simulation program of mechanics; it is developed in laboratory practice by students in their first years of physics studies ata University level. Its aim is a better understanding of the influence of the variable forces of friction in bidimensional movements. We have verified the effectiveness of this teaching method through the evaluation of the students' progress during the courses in which we have carried out this practice

    OH rotational lines as a diagnostic of the warm neutral gas in galaxies

    Get PDF
    We present Infrared Space Observatory (ISO) observations of several OH, CH and H2O rotational lines toward the bright infrared galaxies NGC253 and NGC1068. As found in the Galactic clouds in SgrB2 and Orion, the extragalactic far-IR OH lines change from absorption to emission depending on the physical conditions and distribution of gas and dust along the line of sight. As a result, most of the OH rotational lines that appear in absorption toward NGC253 are observed in emission toward NGC1068. We show that the far-IR spectrum of OH can be used as a powerful diagnostic to derive the physical conditions of extragalactic neutral gas. In particular, we find that a warm (Tk~150 K, n(H2)< 5 10^4 cm^-3) component of molecular gas with an OH abundance of 10^{-7} from the inner <15'' can qualitatively reproduce the OH lines toward NGC253. Similar temperatures but higher densities (5 10^5 cm^-3) are required to explain the OH emission in NGC1068.Comment: 5 pages, 4 figures, accepted in ApJ Part I (2004, October 6
    • …
    corecore