10 research outputs found

    Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The short arm of human chromosome 3 is involved in the development of many cancers including lung cancer. Three bona fide lung cancer tumor suppressor genes namely <it>RBSP3 </it>(AP20 region),<it>NPRL2 </it>and <it>RASSF1A </it>(LUCA region) were identified in the 3p21.3 region. We have shown previously that homozygous deletions in AP20 and LUCA sub-regions often occurred in the same tumor (P < 10<sup>-6</sup>).</p> <p>Methods</p> <p>We estimated the quantity of <it>RBSP3, NPRL2, RASSF1A, GAPDH, RPN1 </it>mRNA and <it>RBSP3 </it>DNA copy number in 59 primary non-small cell lung cancers, including 41 squamous cell and 18 adenocarcinomas by real-time reverse transcription-polymerase chain reaction based on TaqMan technology and relative quantification.</p> <p>Results</p> <p>We evaluated the relationship between mRNA level and clinicopathologic characteristics in non-small cell lung cancer. A significant expression decrease (≥2) was found for all three genes early in tumor development: in 85% of cases for <it>RBSP3</it>; 73% for <it>NPRL2 </it>and 67% for <it>RASSF1A </it>(P < 0.001), more strongly pronounced in squamous cell than in adenocarcinomas. Strong suppression of both, <it>NPRL2 </it>and <it>RBSP3 </it>was seen in 100% of cases already at Stage I of squamous cell carcinomas. Deregulation of <it>RASSF1A </it>correlated with tumor progression of squamous cell (P = 0.196) and adenocarcinomas (P < 0.05). Most likely, genetic and epigenetic mechanisms might be responsible for transcriptional inactivation of <it>RBSP3 </it>in non-small cell lung cancers as promoter methylation of <it>RBSP3 </it>according to NotI microarrays data was detected in 80% of squamous cell and in 38% of adenocarcinomas. With NotI microarrays we tested how often LUCA (<it>NPRL2, RASSF1A</it>) and AP20 (<it>RBSP3</it>) regions were deleted or methylated in the same tumor sample and found that this occured in 39% of all studied samples (P < 0.05).</p> <p>Conclusion</p> <p>Our data support the hypothesis that these TSG are involved in tumorigenesis of NSCLC. Both genetic and epigenetic mechanisms contribute to down-regulation of these three genes representing two tumor suppressor clusters in 3p21.3. Most importantly expression of <it>RBSP3, NPRL2 </it>and <it>RASSF1A </it>was simultaneously decreased in the same sample of primary NSCLC: in 39% of cases all these three genes showed reduced expression (P < 0.05).</p

    The Organic Ammonium Counterion Effect on Slow Magnetic Relaxation of the [Er(hfac)<sub>4</sub>]<sup>−</sup> Complexes

    No full text
    The first mononuclear anionic erbium complex [Er(hfac)4]− (hfac = hexafluoroacetylacetone) with an organic ammonium cation [(CH3)4N+] as the counterion was synthesized and structurally and magnetically characterized. The coordination geometries around the Er ions are square antiprisms with pseudo-D4d symmetry. The complex shows distinct field-induced slow magnetization relaxation, which is described by a combination of Orbach (Ueff/kB~28.54(8) K.) and direct mechanisms. Quantum chemical calculations were performed to analyze the magnetic properties of the complex under consideration

    Effect of Ligand Substitution on Zero-Field Slow Magnetic Relaxation in Mononuclear Dy(III) β-Diketonate Complexes with Phenanthroline-Based Ligands

    No full text
    Herein, we report the synthesis, structure and magnetic properties of two mononuclear complexes of general formula [Dy(acac)3(L)], where L = 2,2-dimethyl-1,3-dioxolo[4,5-f][1,10] phenanthroline (1) or 1,10-phenanthroline-5,6-dione (2), and acac− = acetylacetonate anion. A distorted square-antiprismatic N2O6 environment around the central Dy(III) ion is formed by three acetylacetonate anions and a phenanthroline-type ligand. Both complexes display a single-molecule magnet (SMM) behavior at zero applied magnetic field. Modification of the peripheral part of ligands L provide substantial effects both on the magnetic relaxation barrier Ueff and on the quantum tunneling of magnetization (QTM). Ab initio quantum-chemical calculations are used to analyze the electronic structure and magnetic properties

    Zero-Field Slow Magnetic Relaxation in Binuclear Dy Acetylacetonate Complex with Pyridine-N-Oxide

    No full text
    A new complex [Dy(C5H7O2)3(C5H5NO)]2·2CHCl3 (1) has been synthesized by the reaction of pyridine-N-oxide with dysprosium (III) acetylacetonate in an n-heptane/chloroform mixture (1/20). X-ray data show that each dysprosium atom is chelate-like coordinated by three acetylacetonate ligands and the oxygen atom from two bridging molecules of pyridine-N-oxide, which unite the dysprosium atoms into a binuclear complex. Static (constant current) and dynamic (alternating current) investigations and ab initio calculations of the magnetic properties of complex 1 were performed. The complex was shown to exhibit a frequency maximum under alternating current. At temperatures above 10 K, the maximum shifts to a higher frequency, which is characteristic of SMM behavior. It is established that the dependence of ln(τ) on 1/T for the relaxation process is nonlinear, which indicates the presence of Raman relaxation mechanisms, along with the Orbach mechanism

    Field-theoretical description of the formation of a crack tip process zone

    No full text

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software
    corecore