3,984 research outputs found

    Anaerobic carboxydotrophy in sulfur-respiring haloarchaea from hypersaline lakes

    Get PDF
    Anaerobic carboxydotrophy is a widespread catabolic trait in bacteria, with two dominant pathways: hydrogenogenic and acetogenic. The marginal mode by direct oxidation to CO2 using an external e-acceptor has only a few examples. Use of sulfidic sediments from two types of hypersaline lakes in anaerobic enrichments with CO as an e-donor and elemental sulfur as an e-acceptor led to isolation of two pure cultures of anaerobic carboxydotrophs belonging to two genera of sulfur-reducing haloarchaea: Halanaeroarchaeum sp. HSR-CO from salt lakes and Halalkaliarchaeum sp. AArc-CO from soda lakes. Anaerobic growth of extremely halophilic archaea with CO was obligatory depended on the presence of elemental sulfur as the electron acceptor and yeast extract as the carbon source. CO served as a direct electron donor and H2 was not generated from CO when cells were incubated with or without sulfur. The genomes of the isolates encode a catalytic Ni,Fe-CODH subunit CooS (distantly related to bacterial homologs) and its Ni-incorporating chaperone CooC (related to methanogenic homologs) within a single genomic locus. Similar loci were also present in a genome of the type species of Halalkaliarchaeum closely related to AArc-CO, and the ability for anaerobic sulfur-dependent carboxydotrophy was confirmed for three different strains of this genus. Moreover, similar proteins are encoded in three of the four genomes of recently described carbohydrate-utilizing sulfur-reducing haloarchaea belonging to the genus Halapricum and in two yet undescribed haloarchaeal species. Overall, this work demonstrated for the first time the potential for anaerobic sulfur-dependent carboxydotrophy in extremely halophilic archaea.Accepted Author ManuscriptBT/Environmental Biotechnolog

    Phenotypic and genomic characterization of the first alkaliphilic aceticlastic methanogens and proposal of a novel genus Methanocrinis gen.nov. within the family Methanotrichaceae

    Get PDF
    Highly purified cultures of alkaliphilic aceticlastic methanogens were collected for the first time using methanogenic enrichments with acetate from a soda lake and a terrestrial mud volcano. The cells of two strains were non-motile rods forming filaments. The mud volcano strain M04Ac was alkalitolerant, with the pH range for growth from 7.5 to 10.0 (optimum at 9.0), while the soda lake strain Mx was an obligate alkaliphile growing in the pH range 7.7–10.2 (optimum 9.3–9.5) in the presence of optimally 0.2–0.3 M total Na+. Genomes of both strains encoded all enzymes required for aceticlastic methanogenesis and different mechanisms of (halo)alkaline adaptations, including ectoine biosynthesis, which is the first evidence for the formation of this osmoprotectant in archaea. According to 16S rRNA gene phylogeny, the strains possessed 98.3–98.9% sequence identity and belonged to the obligately aceticlastic genus Methanothrix with M. harundinaceae as the most closely related species. However, a more advanced phylogenomic reconstruction based on 122 conserved single-copy archaeal protein-coding marker genes clearly indicated a polyphyletic origin of the species included in the genus Methanothrix. We propose to reclassify Methanothrix harrundinacea (type strain 8AcT) into a new genus, Methanocrinis gen. nov., with the type species Methanocrinis harrundinaceus comb. nov. We also propose under SeqCode the complete genome sequences of strain MxTs (GCA_029167045.1) and strain M04AcTs (GCA_029167205.1) as nomenclatural types of Methanocrinis natronophilus sp. nov. and Methanocrinis alkalitolerans sp. nov., respectively, which represent other species of the novel genus. This work demonstrates that the low energy aceticlastic methanogenesis may function at extreme conditions present in (halo)alkaline habitats

    Phenotypic and genomic characterization of Bathyarchaeum tardum gen. nov., sp. nov., a cultivated representative of the archaeal class Bathyarchaeia

    Get PDF
    Bathyarchaeia are widespread in various anoxic ecosystems and are considered one of the most abundant microbial groups on the earth. There are only a few reports of laboratory cultivation of Bathyarchaeia, and none of the representatives of this class has been isolated in pure culture. Here, we report a sustainable cultivation of the Bathyarchaeia archaeon (strain M17CTs) enriched from anaerobic sediment of a coastal lake. The cells of strain M17CTs were small non-motile cocci, 0.4–0.7 μm in diameter. The cytoplasmic membrane was surrounded by an S-layer and covered with an outermost electron-dense sheath. Strain M17CTs is strictly anaerobic mesophile. It grows at 10–45°C (optimum 37°C), at pH 6.0–10.0 (optimum 8.0), and at NaCl concentrations of 0–60 g l−1 (optimum 20 g l−1). Growth occurred in the presence of methoxylated aromatic compounds (3,4-dimethoxybenzoate and vanillate) together with complex proteinaceous substrates. Dimethyl sulfoxide and nitrate stimulated growth. The phylogenomic analysis placed strain M17CTs to BIN-L-1 genus-level lineage from the BA1 family-level lineage and B26-1 order-level lineage (former subgroup-8) within the class Bathyarchaeia. The complete genome of strain M17CTs had a size of 2.15 Mb with a DNA G + C content of 38.1%. Based on phylogenomic position and phenotypic and genomic properties, we propose to assign strain M17CTs to a new species of a novel genus Bathyarchaeum tardum gen. nov., sp. nov. within the class Bathyarchaeia. This is the first sustainably cultivated representative of Bathyarchaeia. We propose under SeqCode the complete genome sequence of strain M17CTs (CP122380) as a nomenclatural type of Bathyarchaeum tardum, which should be considered as a type for the genus Bathyarchaeum, which is proposed as a type for the family Bathyarchaeaceae, order Bathyarchaeales, and of the class Bathyarchaeia

    Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis

    Get PDF
    Methanogenic archaea are major players in the global carbon cycle and in the biotechnology of anaerobic digestion. The phylum Euryarchaeota includes diverse groups of methanogens that are interspersed with non-methanogenic lineages. So far, methanogens inhabiting hypersaline environments have been identified only within the order Methanosarcinales. We report the discovery of a deep phylogenetic lineage of extremophilic methanogens in hypersaline lakes and present analysis of two nearly complete genomes from this group. Within the phylum Euryarchaeota, these isolates form a separate, class-level lineage 'Methanonatronarchaeia' that is most closely related to the class Halobacteria. Similar to the Halobacteria, 'Methanonatronarchaeia' are extremely halophilic and do not accumulate organic osmoprotectants. The high intracellular concentration of potassium implies that 'Methanonatronarchaeia' employ the 'salt-in' osmoprotection strategy. These methanogens are heterotrophic methyl-reducers that use C 1 -methylated compounds as electron acceptors and formate or hydrogen as electron donors. The genomes contain an incomplete and apparently inactivated set of genes encoding the upper branch of methyl group oxidation to CO2 as well as membrane-bound heterodisulfide reductase and cytochromes. These features differentiate 'Methanonatronarchaeia' from all known methyl-reducing methanogens. The discovery of extremely halophilic, methyl-reducing methanogens related to haloarchaea provides insights into the origin of methanogenesis and shows that the strategies employed by methanogens to thrive in salt-saturating conditions are not limited to the classical methylotrophic pathway.Accepted Author ManuscriptBT/Environmental Biotechnolog

    Dissimilatory sulfate reduction in the archaeon ‘Candidatus Vulcanisaeta moutnovskia’ sheds light on the evolution of sulfur metabolism

    Get PDF
    Dissimilatory sulfate reduction (DSR)—an important reaction in the biogeochemical sulfur cycle—has been dated to the Palaeoarchaean using geological evidence, but its evolutionary history is poorly understood. Several lineages of bacteria carry out DSR, but in archaea only Archaeoglobus, which acquired DSR genes from bacteria, has been proven to catalyse this reaction. We investigated substantial rates of sulfate reduction in acidic hyperthermal terrestrial springs of the Kamchatka Peninsula and attributed DSR in this environment to Crenarchaeota in the Vulcanisaeta genus. Community profiling, coupled with radioisotope and growth experiments and proteomics, confirmed DSR by ‘Candidatus Vulcanisaeta moutnovskia’, which has all of the required genes. Other cultivated Thermoproteaceae were briefly reported to use sulfate for respiration but we were unable to detect DSR in these isolates. Phylogenetic studies suggest that DSR is rare in archaea and that it originated in Vulcanisaeta, independent of Archaeoglobus, by separate acquisition of qmoABC genes phylogenetically related to bacterial hdrA genes.This work was supported by the Russian Science Foundation (grant number 17-74-30025) and in part by the grant from the Russian Ministry of Science and Higher Education (to N.A.C., A.V.L., E.N.F., M.L.M., A.Y.M., N.V.P. and E.A.B.-O.). Sequencing of PCR amplicons was performed using the scientific equipment of the core research facility ‘Bioengineering’ by T. Kolganova. The proteomics analysis was performed at the Proteomics Facility of the Spanish National Center for Biotechnology (CNB-CSIC), which belongs to ProteoRed, PRB2-ISCIII, supported by grant PT13/0001 (to S.C., M.C.M. and M.F.). P.N.G. acknowledges funding from the UK Biotechnology and Biological Sciences Research Council (BBSRC) within the ERA NET-IB2 programme, grant number ERA-IB-14-030 and the European Union Horizon 2020 Research and Innovation programme (Blue Growth: Unlocking the Potential of Seas and Oceans) under grant agreement number 634486, as well as support from the Centre for Environmental Biotechnology project, part funded by the European Regional Development Fund (ERDF) through the Welsh Government, and support from the Centre of Environmental Biotechnology. D.Y.S. was supported by the SIAM/Gravitation Program (Dutch Ministry of Education, Culture and Science; grant 24002002) and RFBR grant 19-04-00401. F.L.S. and S.N. acknowledge support from the Wiener Wissenschafts, Forschungs- und Technologiefonds (Austria) through the grant VRG15-007. F.L.S. gratefully acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement 803768). I.A.C.P. acknowledges support from the Fundação para a Ciência e Tecnologia (Portugal) through grant PTDC/BIA-BQM/29118/2017 and R&D unit MOSTMICRO-ITQB (UIDB/04612/2020 and UIDP/04612/2020)

    Nanohaloarchaea as beneficiaries of xylan degradation by haloarchaea

    Get PDF
    Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon ‘Candidatus Nanohalobium constans’. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea–host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals

    Raman spectrum and lattice parameters of MgB2 as a function of pressure

    Get PDF
    We report Raman spectra and synchrotron x-ray diffraction measurements of lattice parameters of polycrystalline MgB2 under hydrostatic pressure conditions up to 15 GPa. An anomalously broadened Raman band at 620 cm-1 is observed that exhibits a large linear pressure shift of its frequency. The large mode damping and Gruneisen parameter indicate a highly anharmonic nature of the mode, broadly consistent with theoretical predictions for the E2g in-plane boron stretching mode. The results obtained may provide additional constraints on the electron-phonon coupling in the system.Comment: 3 pages, 3 figure

    Microbial Community and in situ Bioremediation of Groundwater by Nitrate Removal in the Zone of a Radioactive Waste Surface Repository

    Get PDF
    The goal of the present work was to investigate the physicochemical and radiochemical conditions and the composition of the microbial community in the groundwater of a suspended surface repository for radioactive waste (Russia) and to determine the possibility of in situ groundwater bioremediation by removal of nitrate ions. Groundwater in the repository area (10-m depth) had elevated concentrations of strontium, tritium, nitrate, sulfate, and bicarbonate ions. High-throughput sequencing of the V3–V4/V4 region of the 16S rRNA gene revealed the presence of members of the phyla Proteobacteria (genera Acidovorax, Simplicispira, Thermomonas, Thiobacillus, Pseudomonas, Brevundimonas, and uncultured Oxalobacteraceae), Firmicutes (genera Bacillus and Paenibacillus), and Actinobacteria (Candidatus Planktophila, Gaiella). Canonical correspondence analysis suggested that major contaminant – nitrate, uranium, and sulfate shaped the composition of groundwater microbial community. Groundwater samples contained culturable aerobic organotrophic, as well as anaerobic fermenting, iron-reducing, and denitrifying bacteria. Pure cultures of 33 bacterial strains belonging to 15 genera were isolated. Members of the genera Pseudomonas, Rhizobium, Cupriavidus, Shewanella, Ensifer, and Thermomonas reduced nitrate to nitrite and/or dinitrogen. Application of specific primers revealed the nirS and nirK genes encoding nitrite reductases in bacteria of the genera Pseudomonas, Rhizobium, and Ensifer. Nitrate reduction by pure bacterial cultures resulted in decreased ambient Eh. Among the organic substrates tested, sodium acetate and milk whey were the best for stimulation of denitrification by the microcosms with groundwater microorganisms. Injection of these substrates into the subterranean horizon (single-well push-pull test) resulted in temporary removal of nitrate ions in the area of the suspended radioactive waste repository and confirmed the possibility for in situ application of this method for bioremediation

    Elucidation on the Effect of Operating Temperature to the Transport Properties of Polymeric Membrane Using Molecular Simulation Tool

    Get PDF
    Existing reports of gas transport properties within polymeric membrane as a direct consequence of operating temperature are in a small number and have arrived in diverging conclusion. The scarcity has been associated to challenges in fabricating defect free membranes and empirical investigations of gas permeation performance at the laboratory scale that are often time consuming and costly. Molecular simulation has been proposed as a feasible alternative of experimentally studied materials to provide insights into gas transport characteristic. Hence, a sequence of molecular modelling procedures has been proposed to simulate polymeric membranes at varying operating temperatures in order to elucidate its effect to gas transport behaviour. The simulation model has been validated with experimental data through satisfactory agreement. Solubility has shown a decrement in value when increased in temperature (an average factor of 1.78), while the opposite has been observed for gas diffusivity (an average factor of 1.32) when the temperature is increased from 298.15Â K to 323.15Â K. In addition, it is found that permeability decreases by 1.36 times as the temperature is increased

    Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons

    Get PDF
    We report measurements of the resonance properties of Lambda_c(2595)+ and Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+ pi+/- final states. These measurements are performed using data corresponding to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. Exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averages for Sigma_c states, and significantly smaller uncertainties than the world averages for excited Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17 pages, 15 figure
    corecore