7,736 research outputs found

    String theories as the adiabatic limit of Yang-Mills theory

    Get PDF
    We consider Yang-Mills theory with a matrix gauge group GG on a direct product manifold M=Σ2×H2M=\Sigma_2\times H^2, where Σ2\Sigma_2 is a two-dimensional Lorentzian manifold and H2H^2 is a two-dimensional open disc with the boundary S1=H2S^1=\partial H^2. The Euler-Lagrange equations for the metric on Σ2\Sigma_2 yield constraint equations for the Yang-Mills energy-momentum tensor. We show that in the adiabatic limit, when the metric on H2H^2 is scaled down, the Yang-Mills equations plus constraints on the energy-momentum tensor become the equations describing strings with a worldsheet Σ2\Sigma_2 moving in the based loop group ΩG=C(S1,G)/G\Omega G=C^\infty (S^1, G)/G, where S1S^1 is the boundary of H2H^2. By choosing G=Rd1,1G=R^{d-1, 1} and putting to zero all parameters in ΩRd1,1\Omega R^{d-1, 1} besides Rd1,1R^{d-1, 1}, we get a string moving in Rd1,1R^{d-1, 1}. In arXiv:1506.02175 it was described how one can obtain the Green-Schwarz superstring action from Yang-Mills theory on Σ2×H2\Sigma_2\times H^2 while H2H^2 shrinks to a point. Here we also consider Yang-Mills theory on a three-dimensional manifold Σ2×S1\Sigma_2\times S^1 and show that in the limit when the radius of S1S^1 tends to zero, the Yang-Mills action functional supplemented by a Wess-Zumino-type term becomes the Green-Schwarz superstring action.Comment: 11 pages, v3: clarifying remarks added, new section on embedding of the Green-Schwarz superstring into d=3 Yang-Mills theory include

    Stabilization of Extra Dimensions at Tree Level

    Get PDF
    By considering the effects of string winding and momentum modes on a time dependent background, we find a method by which six compact dimensions become stabilized naturally at the self-dual radius while three dimensions grow large.Comment: 15 pages, 2 figures, minor typos correcte

    Towards a formally verified functional quantum programming language

    Get PDF
    This thesis looks at the development of a framework for a functional quantum programming language. The framework is first developed in Haskell, looking at how a monadic structure can be used to explicitly deal with the side-effects inherent in the measurement of quantum systems, and goes on to look at how a dependently-typed reimplementation in Agda gives us the basis for a formally verified quantum programming language. The two implementations are not in themselves fully developed quantum programming languages, as they are embedded in their respective parent languages, but are a major step towards the development of a full formally verified, functional quantum programming language. Dubbed the “Quantum IO Monad”, this framework is designed following a structural approach as given by a categorical model of quantum computation

    Global marine bacterial diversity peaks at high latitudes in winter.

    Get PDF
    Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms

    Duality and ontology

    Get PDF
    A ‘duality’ is a formal mapping between the spaces of solutions of two empirically equivalent theories. In recent times, dualities have been found to be pervasive in string theory and quantum field theory. Naïvely interpreted, duality-related theories appear to make very different ontological claims about the world—differing in e.g. space-time structure, fundamental ontology, and mereological structure. In light of this, duality-related theories raise questions familiar from discussions of underdetermination in the philosophy of science: in the presence of dual theories, what is one to say about the ontology of the world? In this paper, we undertake a comprehensive and non-technical survey of the landscape of possible ontological interpretations of duality-related theories. We provide a significantly enriched and clarified taxonomy of options—several of which are novel to the literature
    corecore