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Stabilization of Extra Dimensions at Tree Level

Scott Watson∗ and Robert Brandenberger†
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Abstract

By considering the effects of string winding and momentum modes on a time dependent

background, we find a method by which six compact dimensions become stabilized naturally at

the self-dual radius while three dimensions grow large.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

String theory continues to be a promising candidate for a quantum theory of grav-

ity. However, there are several key challenges in an attempt to relate the theory to

phenomenology. One such issue is that string theory predicts a number of extra spatial

dimensions. A standard resolution to this problem is to assume that six of the dimensions

are small enough to escape experimental detection, which usually means they are taken

to be on the order of the Planck scale. Given this, we must not only explain why the six

spatial dimensions evolve differently from the other three, but also why they are frozen

at such an extraordinarily small size.

A possible resolution to this problem was suggested in [1] (see also [2]) and has since

been generalized to include more realistic background geometries and the inclusion of

branes [3, 5, 6]. The authors of [1] argued that, by considering the dynamics of the winding

and momentum modes of the strings, a new symmetry specific of string theory, namely

t-duality, could eliminate the big-bang singularity and also explain the dimensionality of

space-time. However, these arguments were only qualitative.

In this paper we want to quantify some of the arguments presented in [1]. Specifically

we will demonstrate that, working in the regime of weak string coupling and at tree level

in α′, we find that the dynamics of string winding and momentum modes lead to a natural

mechanism to stabilize the extra dimensions at the self-dual radius.

In Section 2 we will review briefly the origin of the equations of motion for strings in

time-dependent backgrounds. These result from demanding conformal invariance of the

world-sheet action (vanishing β functions). In Section 3 we include the massive modes

of the string as source terms for the stringy Einstein equations and demonstrate that

the complete set of equations are invariant under t-duality. In Section 4 we solve the

equations in the presence of string sources and find that stability of the extra dimensions

results naturally for arbitrary initial conditions. We conclude with some brief remarks.
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II. DYNAMICS OF STRINGS IN TIME-DEPENDENT BACKGROUNDS

We begin this section by briefly reviewing the equations of motion for strings in time-

dependent backgrounds (for more details see e.g. [8]). The starting point for strings in a

curved space-time is the nonlinear sigma model whose action is

Sσ = − 1

4πα′

∫

d2σ
(√

−γγabGµν(X) ∂aX
µ∂bX

ν+ǫabBµν(X) ∂aX
µ∂bX

ν+α′√γφ(X)R(2)
)

,

(1)

where γab is the world-sheet metric, (2πα′) is the inverse string tension, Gµν is the back-

ground space-time metric, Bµν is the background antisymmetric tensor, and φ is the

background dilaton which is coupled to the world-sheet Ricci scalar R(2). The string

coupling is given in terms of the dilaton by gs = e2φ.

We obtain the equations of motion by demanding conformal invariance of the world-

sheet action. This is equivalent to demanding that the trace of the world-sheet stress

tensor given by

2πT a
a = βG

µν

√
γγab∂aX

µ∂bX
ν + βB

µνǫ
ab∂aX

µ∂bX
ν + βφ√γR(2), (2)

vanish, where the β functions are

βG
µν = α′

(

Rµν + 2∇µ∇νφ − 1

4
HµκσH κσ

ν

)

+ O(α′2),

βB
µν = α′

(

∇κHκµν − 2∇κφHκµν

)

+ O(α′2),

βφ = α′
(D − 26

3α′
− 4∇κ∇κφ + 4∇κφ∇κφ − R +

1

12
HκµνH

κµν
)

+ O(α′2), (3)

with H = dB denoting the field strength associated with the field Bµν . Keeping terms

to lowest order in α′, these equations of motion can alternatively be derived from a low

energy effective action formulated in the target space or bulk,

Sbulk =
1

4πα′

∫

dDx
√
−Ge−2φ

(

R + 4(∇φ)2 − 1

12
H2

)

, (4)

where R is the Ricci scalar and G is the determinant of the metric. Thus far we have

restricted ourselves to the bosonic string, however this action remains valid for the case
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of the supersymmetric string. For example, with D = 10 Eq. (4) becomes the low energy

effective action of type II-A superstring theory.

We now proceed by demanding that the β functions vanish. Assuming that we are in

the critical dimension and that there are no fluxes (i.e. D = 26 or 10 and Bµν = 0) we

find that (3) becomes,

Rµν + 2∇µ∇νφ = 0,

R + 4∇κ∇κφ − 4∇κφ∇κφ = 0. (5)

Next we wish to include stringy sources into the modified Einstein equations (5). This

can be done by adding a matter term to the bulk action (4) as was done in [2]. Here

we will take a different approach by including the sources at the level of the equations

of motion in the form of the stress energy tensor. We expect the equations of motion to

generalize in the presence of string sources to

R ν
µ + 2∇µ∇νφ = 8πM−2

p e2φT ν
µ ,

R + 4∇κ∇κφ − 4∇κφ∇κφ = 0. (6)

We will assume that the string sources take the form of a perfect fluid,

T ν
µ = diag(ρ,−p1,−p2,−p3,−p4,−p5,−p6,−p7,−p8,−p9), (7)

where ρ is the energy density of the strings and pi is the pressure density in the i’th

direction.

We conclude this section by consider the equations of motion (6) under the assumption

of a homogeneous metric of the form

ds2 = dt2 − e2λd~x2 − e2νd~y2, (8)

where (t, ~x) are the coordinates of 3 + 1 space-time and ~y are the coordinates of the

other six dimensions. The scale factors a(t) and b(t) are defined by λ ≡ ln(a(t)) and

ν ≡ ln(b(t)).
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Given this ansatz for the metric and assuming the string sources to be a perfect fluid,

the equations of motion (6) become

−3λ̈ − 3λ̇2 − 6ν̈ − 6ν̇2 + 2φ̈ =
1

2
e2φρ, (9)

λ̈ + 3λ̇2 + 6λ̇ν̇ − 2λ̇φ̇ =
1

2
e2φpλ, (10)

ν̈ + 6ν̇2 + 3λ̇ν̇ − 2ν̇φ̇ =
1

2
e2φpν , (11)

3λ̈ + 6λ̇2 + 6ν̈ + 21ν̇2 + 18λ̇ν̇ + 4φ̇2 − 4φ̈ − 12λ̇φ̇ − 24ν̇φ̇ = 0, (12)

where pλ and pν are the pressures in the respective dimensions and we work in Planck

units with 16πM−2
p = e2φ.

We note that setting the dilaton to a constant takes our equations to the expected

Friedmann-Robertson-Walker (FRW) equations with the constraint R = 0. Explicitly, if

we restrict to the 3 + 1 dimensional case (ν = 0) we find,

H2 ≡ λ̇2 =
8π

3M2
p

ρ (13)

λ̈ + λ̇2 = − 4π

3M2
p

(ρ + 3p) (14)

R = λ̈ + 2λ̇2 = 0. (15)

The last condition, R = 0, implies T µ
µ = 0, which tells us that as the Einstein theory

becomes the effective theory the evolution must start in a radiation-like phase with ρ −
3p = 0. This is no surprise since the equations were obtained by demanding conformal

invariance. Moreover, this ties the picture together nicely since we expect the stringy

effects in cosmology to eventually settle into the radiation dominated phase of the standard

cosmological model.

III. STRING SOURCES AND T-DUALITY

In [1] it was argued that by considering the dynamics of closed strings on a compact

background geometry one could not only produce a nonsingular cosmology, but also pro-
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vide an explanation for the dimensionality of space-time. The analysis of [1] was heuristic

but lacked rigorous quantitative calculations. Here we want to address some of the is-

sues in a more quantitative manor (for works addressing other issues more rigorously see

[2, 3, 5, 6]). In particular, we will demonstrate that a mechanism to stabilize the extra

dimensions can result. Note that a similar investigation of the role of massive string states

on the evolution of small and large dimensions was recently published in [7]. Our results

agree with those of [7], although the emphasis on the stabilization mechanism is new here.

Closed string theories on a compact geometry have their mass spectrum altered in

two ways. First, because the center of mass momentum must be periodic in the compact

directions we get its quantization analogous to the Kaluza-Klein case. In addition to these

momentum modes there are additional degrees of freedom associated with the possible

winding of the strings. These (anti-)winding modes wrap the compact dimensions in a

(counter-)clockwise direction. Associated with the winding is a topologically conserved

charge known as the winding number. This quantity is (negative) positive for (anti-)

winding modes and is conserved so winding modes can only be created and destroyed in

pairs. When a winding mode intersects with an anti-winding mode this results in a closed

unwound string with winding number zero. The total mass spectrum of the string also

includes the oscillatory modes which give rise to the particle spectrum. The spectrum is

found by demanding all states to be on-shell and in the case of one compact dimension

takes the form [9]

M2 =
n2

R2
+ w2R2 + 2(N + Ñ − 2), (16)

where we have chosen units where α′ = 1. The integers n and w denote the Kaluza-Klein

level and the winding numbers of the string, respectively. N and Ñ are the left and right

oscillators of the string that give rise to the particle spectrum and R is the radius of

the compact dimension. It was shown in [4] that the oscillator terms are exponentially

suppressed and rendered unimportant for determining the overall evolution of the back-

ground. Thus, we will focus on the zero modes of the mass spectrum in the rest of this
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paper.

The important result that can immediately be seen from (16) is that the spectrum

remains unchanged if we send R → 1/R and n ↔ w. This property is know as t-duality.

It turns out that t-duality is not just a property of the strings, but also of the cosmological

background [10]. To see this, we note that the role of the radius is played by the scale

factors a(t) and b(t). We then find that the cosmological equations (9)-(12) are invariant

under the duality transformation,

λ(t) → −λ(t), ν(t) → −ν(t), φ(t) → φ(t) − 3λ(t) − 6ν(t). (17)

Shifting the dilaton by the volume factor is required because this is a dynamical (time-

dependent) duality.

Now that we have observed that our equations and string sources are duality invariant

let us proceed by explicitly constructing energy and pressure terms consisting of the zero

modes of the string. From (16) we find that the zero mode energy and pressure 1 of the

string gas in D − 1 compact dimensions can be written as,

E = 3µN (3)eλ + 3µM (3)e−λ + 6µN (6)eν + 6µM (6)e−ν ,

Pλ = −µN (3)eλ + µM (3)e−λ,

Pν = −µN (6)eν + µM (6)e−ν , (18)

where µ is the chemical potential (mass per unit length of the string), E is the energy,

and Pi, N i, M i are the pressure, number of winding and momentum modes in the ith

direction, respectively. By substituting these terms into (9)-(12) we find the equations

describing the evolution of our background in terms of string sources,

−λ̈ − λ̇2 − 2ν̈ − 2ν̇2 +
2

3
φ̈ =

µ

2
e2φ−3λ−6ν

(

N (3)eλ + M (3)e−λ + 2N (6)eν + 2M (6)e−ν
)

(19)

λ̈ + 3λ̇2 + 6λ̇ν̇ − 2λ̇φ̇ =
µ

2
e2φ−3λ−6ν

(

−N (3)eλ + M (3)e−λ
)

(20)

1 This pressure is related to the previous by Pi = piV where V is the volume.
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ν̈ + 6ν̇2 + 3λ̇ν̇ − 2ν̇φ̇ =
µ

2
e2φ−3λ−6ν

(

−N (6)eν + M (6)e−ν
)

(21)

3λ̈ + 6λ̇2 + 6ν̈ + 21ν̇2 + 18λ̇ν̇ + 4φ̇2 − 4φ̈ − 12λ̇φ̇ − 24ν̇φ̇ = 0. (22)

These equations give us a quantitative way to address the issues first discussed in [1],

where it was argued that the winding modes of the strings become more massive as the

universe expands, thus preventing the universe from expanding. We can see this through

the above equations since the winding modes contribute a negative pressure term and

thus a negative effective potential in the equations of motion for λ and µ [2]. Thus, the

negative pressure of the winding modes does NOT imply an accelerating phase for the

background as it would if the background were described by pure General Relativity.

When considering the initial state to consist of a gas of string winding modes, the

dimensionality and isotropy of space-time can be explained as a natural consequence of the

dynamics [1, 5, 6]. The strings are initially taken to be in thermal equilibrium and pairs of

wound strings are created and annihilated allowing expansion to persist. As the expansion

continues the winding modes fall out of equilibrium and the negative pressure of the

remaining modes will halt the expansion. This leads to a period of loitering at which time

strings in three of the dimensions can find each other and annihilate into loops [5]. This

leaves three dimensions filled with a gas of string loops with an equation of state resembling

ordinary radiation, whereas the other six dimensions remain compact. Therefore, the

dimensionality of space-time results from decompactification of three dimensions, since

this is the maximum number of dimensions that strings are able to find each other to

intersect.

There are several points of concern with the above argument. As the three dimensions

grow large the strings that have not yet annihilated and the strings in the six small

dimensions could play an important role in the dynamics. Considering the effect that

these inhomogeneities have on the geometry and stability of the model is important for

the success of the model and is currently being examined [11]. Another important issue is

the stability of the internal dimensions. In the above argument it was assumed that the
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dimensions are trying to expand, but we must also consider the case of contraction. This is

where the momentum modes play an important role in the dynamics. As mentioned above,

the momentum modes are dual to the winding modes and result in the opposite dynamical

behavior. That is, as the universe collapses these modes become heavy and it becomes

energetically favored to re-expand. In this way the momentum modes prevent collapse to

a singularity by contributing an increasing positive pressure to drive the evolution towards

expansion. Thus, the resulting cosmology is non-singular.

Considering both the winding and momentum modes suggests that the natural size of

the universe should be at the self-dual radius where the total energy is minimized. At

this radius the negative pressure of the winding modes is exactly canceled by the positive

pressure of the momentum modes. Thus, in the context of string theory it is natural to

expect the evolution of our universe to begin at the self-dual radius, which is unity in

string units. In fact, this radius is a very special radius in string theory and represents a

point of enhanced symmetry for the gauge groups associated with the internal dimensions

and the strings (c.f. [12]).

An important point that we have not yet discussed is the role of the dilaton. Recall

that the string coupling is given by gs = e2φ, where φ is the dilaton. In order for the

equations of motion (19)-(22) to remain valid we must restrict the phase space to the

region of small string coupling (gs << 1). Moreover, we must choose initial conditions

that do not result in a rapidly growing coupling. In our analysis we simply enforce this as

an energetically favored constraint. Moreover, a more complete analysis would consider

a potential for the dilaton. This would allow us to take our considerations out of the

stringy regime and into the classical FRW radiation dominated universe. The potential

of the dilaton should be provided by the correct model of supersymmetry breaking (this

remains one of the outstanding challenges for string theory).
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IV. STABILIZATION

It was shown in [5] and [6] that the equations of motion (19)-(22) lead to a period

of cosmological loitering, allowing winding modes to annihilate in three dimensions and

resulting in those three dimensions expanding to a large size. However, in these approaches

it was assumed that the effect of the six small dimensions could be ignored. Here we

improve on this analysis and include the evolution of the small dimensions as well as the

gravitational coupling between the large and the small dimensions.

We are interested in Eqs. (19)-(22) in the case when three of the spatial dimensions

are taken to be large, expanding, and filled with momentum modes only, i.e. N (3) = 0,

since the winding modes have all annihilated into string loops. The other six dimensions

are taken to start at the self-dual radius, i.e. b = 1 and ḃ = 0 in string units. This implies

ν = ν̇ = ν̈ = 0, and thus it follows from (21)

ν̈ + 6ν̇2 + 3λ̇ν̇ − 2ν̇φ̇ = 0 =
µ

2
e2φ−3λ−6ν

(

−N (6)eν + M (6)e−ν
)

, (23)

that the pressure must vanish, which is only possible if

N (6) = M (6) . (24)

This is an expected result, since at the self-dual point the momentum modes and winding

modes should be equivalent.

Given the constraint (24) (and making use of the notation l(t) = λ̇, q(t) = ν̇, and

f(t) = φ̇) we can rewrite the system (19)-(22) as the following system of first order

differential equations,

7l2 + 35q2 + 42lq +
4

3
f 2 − 10lf − 20qf

= µe2φ−3λ−6ν
(

5M (3)e−λ + 8N (6) cosh(ν) − 3N (6) sinh(ν)
)

(25)

ḟ = −15

4
q2 − 9

2
lq − 3qf − 3

4
l2 − 3

2
lf + f 2

+
3µ

4
e2φ−3λ−6ν

(1

2
M (3)e−λ − 2N (6) sinh(ν)

)

(26)
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FIG. 1: Here we take the six small dimensions to be at the self-dual radius and with vanishing

expansion rate initially, b0 = 1 and ν̇0 = 0. We find that the dimensions remain stable at the

self-dual point regardless of the behavior of the dilaton and of the three large dimensions. These

are shown in the figure for the initial values λ0 = 3, λ̇0 = 0.5, and φ0 = −3. However, this result

holds for generic initial values as long as we respect the weak coupling limit (i.e. gs << 1). Note

that we are using Planck units.

l̇ = −3l2 − 6lq + 2lf +
µ

2
M (3)e2φ−4λ−6ν (27)

q̇ = −6q2 − 3lq + 2qf − µN (6)e2φ−6ν−3λ sinh(ν). (28)

We take (25) as a constraint on the initial data and then solve the remaining system

numerically.

We first consider the six small dimensions to be initially static at the self-dual radius.

We find that they remain fixed and stable at the self-dual radius for all subsequent times.

This result is robust and independent of the behavior of the three large spatial dimensions

and the dilaton. In Fig. (1) we plot (in Planck units) the behavior of the two scale factors

and of the string coupling as a function of time. As can be seen from the figure, the string
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FIG. 2: We consider initial values of b(t) away from the self-dual radius and find oscillations

about the self-dual radius which are damped by the dilaton and by the evolution of the large

dimensions. This is again a generic result. Here we present the evolution for the following initial

data: λ̇0 = .500, φ0 = −3.00, φ̇0 = .380, λ0 = 3.00, ν̇0 = 0, ν0 = 0

λ̇0 = .500, φ0 = −3.00, φ̇0 = −.020, λ0 = 3.00, ν̇0 = −.100, ν0 = .010

λ̇0 = .500, φ0 = −3.00, φ̇0 = −.008, λ0 = 3.00, ν̇0 = −.100, ν0 = .500

coupling remains small for all times guaranteeing that the weak coupling regime is valid.

We now relax our assumption that the small dimensions begin at the self-dual point

(maintaining, however, the constraint (24)). In this way we can examine whether the

winding and momentum modes do indeed drive the system towards the self-dual point.

We begin by introducing an initial radius slightly larger than the self-dual radius and

consider the evolution with a nonzero expansion rate. At the beginning of the evolution,

b(t) oscillates around the self-dual radius with decreasing amplitude as can be seen in Fig.

(2). The dilaton and the three other dimensions play an important role by damping the

oscillations. It is important to note that the damping is not dependent on the dilaton
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alone, as can be seen from the exponential term in (26)-(28) 2. The growth of the three

large dimensions is also important for the stabilization process. As the three large dimen-

sions expand, this damps the oscillation of the internal scale factor of the six dimensions

to the self-dual radius.

We find that as we increase the initial value of the internal dimensions that the subse-

quent motion is damped but with a decreasing frequency. In Fig. (2) we consider three

cases differing in the initial values for the size of the small dimensions and their expansion

rate. We find that if we displace the scale factor of the small dimensions by an arbi-

trary amount that the damping will suffice to drive the evolution of b(t) to the self-dual

point. In this way we see that the inclusion of the momentum and winding modes offers

a mechanism to stabilize the extra dimensions at the self-dual radius.

V. CONCLUSION

By considering the effects of string winding and momentum modes on a time-dependent

background, we have shown that stabilization of extra dimensions results for reasonable

initial conditions. Furthermore, we have shown that the stabilization radius is the ex-

pected self-dual point where the symmetries of the theory are enhanced. We remind the

reader that we have restricted our analysis to the weak coupling region of phase space

where gs << 1 and worked to lowest order in α′.

This result is encouraging, since it agrees well with the predictions of [1], which were

based on assuming t-dual matter sources and their plausible effects on the background

geometry. It would be interesting to test the stability of our model under corrections of

higher order in α′, and also in the presence of inhomogeneities. Inhomogeneity is also an

important consideration for the evolution of the three large dimensions and will be the

subject of future work [11].

2 Recall that we are interested in the region of phase space where gs = e2φ = e−2|φ|.
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Lastly, we stress again that our model remains incomplete without a better under-

standing of the dilaton. A successful method to generate a potential for the dilaton and

carrying us from the string theory regime to the late time phase when classical general

relativity applies is still needed. Our knowledge of the non-perturbative aspects of string

theory continues to grow, and this may help resolve this problem and yield a better picture

of string theory phenomenology.
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