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String theories as the adiabatic limit of Yang-Mills theory
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We consider Yang-Mills theory with a matrix gauge group G on a direct product manifold M = %, x H?,
where ¥, is a two-dimensional Lorentzian manifold and H? is a two-dimensional open disc with the
boundary S! = OH?. The Euler-Lagrange equations for the metric on X, yield constraint equations for the
Yang-Mills energy-momentum tensor. We show that in the adiabatic limit, when the metric on H? is scaled
down, the Yang-Mills equations plus constraints on the energy-momentum tensor become the equations
describing strings with a world sheet ¥, moving in the based loop group QG = C*(S', G)/G, where S' is
the boundary of H2. By choosing G = R and putting to zero all parameters in QR ! besides R¥~!"I,
we get a string moving in R4~!!. In another paper of the author, it was described how one can obtain the
Green-Schwarz superstring action from Yang-Mills theory on X, x H? while H? shrinks to a point. Here we
also consider Yang-Mills theory on a three-dimensional manifold X, x S' and show that in the limit when
the radius of S' tends to zero, the Yang-Mills action functional supplemented by a Wess-Zumino-type term
becomes the Green-Schwarz superstring action.

DOI: 10.1103/PhysRevD.92.045003 PACS numbers: 11.15.-q, 11.15.Kc, 11.25.-w

I. INTRODUCTION We start with the gauge potential A = A, dx* with values
in the Lie algebra ¢ = Lie G having scalar product (-, -)
defined either via trace Tr or, for Abelian groups like R?-7,
TP-1 etc., via a metric on vector spaces. The gauge field
F=dA+ A A A is the g-valued 2-form

Superstring theory has a long history [1-3] and pretends
on description of all four known forces in nature. In the
low-energy limit superstring theories describe supergravity
in ten dimensions or supergravity interacting with super-
symmetric Yang-Mills (SYM) theory. On the other hand,

1
Yang-Mills and SYM theories in four dimensions give F = 5.7-" wdX A dx? with
descriptions of three main forces in nature not including
gravity [4-7]. The aim of this short paper is to show that Fuw = OpA, = 0, Ay + [Ay Al (1)

bosonic strings (both open and closed) as well as type I,

IIA, and IIB superstrings can be obtained as a subsector of ~ The Yang-Mills equations on M with the metric

pure Yang-Mills theory with some constraints on the Yang- o

Mills energy-momentum tensor. Put differently, knowing ds? = G dxtdx” = Japdx“dx” +- gijdx'dx’ (2)
the action for superstrings with a world sheet %,, we

introduce a Yang-Mills action functional on &, x H2 oron  have the form

¥, x §' such that the Yang-Mills action becomes the

. . . 2 1 .
Green—Schwarz sgperstrmg action whlle H or S' shrink D,, e / | det g|F#v) Aw ]:;w] _
to a point. We will work in Lorentzian signature, but all |d tg
calculations can be repeated for the Euclidean signature of (3)
spacetime.

where g = (g,,) and 0, = 0/0x".

II. YANG-MILLS EQUATIONS Equations (3) follow from the standard Yang-Mills

) ) ) ) action on M,
Consider Yang-Mills theory with a matrix gauge group

G on a direct product manifold M = %, x H?, where %, ,
is a two-dimensional Lorentzian manifold (flat case is / d*x\/| det g|(F, s (4)
included) with local coordinates x4, a,b,... = 1,2, and a
metric tensor gs, = (ga_b)> H? is the disc Wgﬂé coor:iiélates where (-, -) is the scalar product on the Lie algebra g. Note
X, 0, =34, satisfying the inequality (x*)"+(x*)" <1, that the metric gy, on %, is not fixed and the Euler-
and the metric g2 = (g;;). Then (x*) = (x,x") are local [ 4orange equations for gs, yield the constraint equations
coordinates on M with u =1, ..., 4.
1
Ty = giﬁ(fal’fba) gab(}—wa ) (5)
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for the Yang-Mills energy-momentum tensor 7,; i.e., its

components along X, are vanishing. Note that these
constraints can be satisfied for many gauge configurations;
e.g., for self-dual gauge fields, not only does 7,;, = O but
even T, = 0.

III. ADIABATIC LIMIT
On M = %, x H?> we have the obvious splitting

A= Adxt = A,dx? + Adx’, (6)
1 1 . .
F =5 F e Adx =3 Fapda® A dx? + Fyidx® A daf
1 . .
o Fd’ A i, (7)

T =T, dx*dx* = T ,dx“dx? 4 2T ,;dx“dx’ + T;;dx'dx/.
(8)

By using the adiabatic approach in the form presented in
[8,9], we deform the metric (2) and introduce the metric

ds? = g,pdx?dx? + &g, ;dx'dx/, 9)
where ¢ € [0, 1] is a real parameter. It is assumed that the

fields A, and F,, smoothly depend in e, ie., A, =

AV L e2AV 4 and fﬂy:f,(,?,)+82]:,<,L)+~--.

Furthermore, we have det g, = ¢* det(g,,) det(g;;) and

Fe =gt gl Fea=F,

Fol = giegd F o = e2F*  and

Fl = glgl Fru = e FV, (10)
where indices in F* are raised by the nondeformed metric
tensor g

For the deformed metric (9) the action functional (4) is
changed to

1 4 2 ab
S, ZA/Id x\/| detgzz|\/detgH2{e (F ap» F°)
+ 2(Fuis FU) + €2(Fiy F) ). (11)

The term ¢~%(F,;, ) in the Yang-Mills Lagrangian (11)
diverges when € — 0. To avoid this we impose the flatness
condition

0 . _
FP=0 = lim(e™!F;j) = 0 (12)

on the components of the field tensor along H?. Here
F 5.?) =0, but F fll) etc. in the &> expansion must not be

zero. For the deformed metric (9), the Yang-Mills equations
have the form
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2D, F + D,F =0, (13)

eD,F + e 'D;F'i = 0. (14)

In the deformed metric (9) the constraint equations (5)
become

. 1 :
szh = Sz{gcd(]:aw]:bd) _4gub(fcd9fcd)}

. 1 .
+gl/(]:ai7-7:bj>_Egab(]:ch]:“>

1 .
_Zg_zgab(}-ijv]:u) =0. (15)
In the adiabatic limit € — 0, the Yang-Mills equations (13)
and (14) become

Dl‘fih - 0, (16)
D, F% =0, (17)

since the £~! term vanishes due to (12). We also keep (17)
since it follows from the action (11) after taking the limit
e — 0. One can see that the constraint equations (15) are
nonsingular in the limit & — 0 also due to (12):

. 1 :
10 = ¢/(Fui- o) =5 90(Fein F) = 0. (18)

Note that for the adiabatic limit of instanton equations [8,9]
the constraints (15) disappear since the energy-momentum
tensor for self-dual and anti-self-dual gauge fields vanishes
on any four-manifold M.

IV. FLAT CONNECTIONS

Now we start to consider the flatness equation (12), the
equations (16), (17), and the constraint equations (18).
From now on we will consider only zero modes in &’
expansions and equations on them. For simplicity of
notation we will omit the index “(0)” from all A© and
FO) tensor components. In the adiabatic approach it is
assumed that all fields depend on coordinates x* € Z, only
via moduli parameters ¢*(x*), o, f = 1,2, ..., appearing in
the solutions of the flatness equation (12).

Flat connection A == A;dx’ on H? has the form

Ay =g 'dg with d=dx'd;, ford; = %, (19)
where g = g(¢*(x?), x') is a smooth map from H? into the
gauge group G for any fixed x* € Z,.

Let us introduce on H? spherical coordinates: x
pcose and x* = psing. Using these coordinates, we
impose on ¢ the condition g¢(¢ =0,p> —>1)=1d
(framing) and denote by CP(H?, G) the space of framed

3:
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flat connections on H? given by (19). On H?, as on a
manifold with a boundary, the group of gauge trans-
formations for any fixed x* € %, is defined as (see e.g.,
[9-11])

G = {g:H? > Glg —1d_for p* > 1}.  (20)

Hence the solution space of the equation (12) is the
infinite-dimensional group N = CF(H?,G), and the
moduli space of solutions is the based loop group
[9,10,12]

M =CQ(H? G)/Gyr = QG. (21)
This space can also be represented as QG = LG/G,
where LG = C*(S', G) is the loop group with the circle
S' = OH? parametrized by e'“.

V. MODULI SPACE

On the group manifold (21) we introduce local coor-
dinates ¢* with @ = 1, 2, ... and recall that .A,,’s depend on
x € %, only via moduli parameters ¢* = ¢*(x“). Then
moduli of gauge fields define a map

) ={s"(x)}. (22)

These maps are constrained by Eqs. (16), (17), and (18).
Since A;> is a flat connection for any x? € %,, the
derivatives 0,A; have to satisfy the linearized (around
Ay2) flatness condition; i.e., d,.4; belong to the tangent
space T 4N of the space N' = CP(H?, G) of framed flat
connections on H>. Using the projection z: A" — M from
N to the moduli space M, one can decompose 9,.4; into
the two parts

¢:Z, - M with ¢(x

T.AN = ”*T.AM @ T.Ag < aaAi = (aaqsﬁ)fﬂi + Dieu’

(23)

where G is the gauge group G2 for any fixed x¢ € X,
{&, = &,dx'} is a local basis of tangent vectors at T 4 M
(they form the loop Lie algebra Qg) and ¢, are g-valued
gauge parameters (D;e, € T 4G) which are determined by
the gauge-fixing conditions

gijDié:aj =0 & gile,Djea = g”DlaaAj (24)
J

1

/| detgs, |
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Note also that since A;(¢%, x/) depends on x“ only via ¢%,
we have

OA;
o’

where the gauge parameters ¢4 are found by solving the
equations

0,A; =

:>€a7

(0.9 )eg. (25)

0A;

/DDe = ¢ D,
g p g a¢ﬁ

(26)

Recall that A; are given explicitly by (19) and A, are yet
free. It is natural to choose A, = €, [5,6] and obtain

fai = aaAi - D,’Aa = (aa¢ﬂ)§ﬂ1 = ”*8a-'4i € T.AM

(27)

Thus, if we know the dependence of ¢»* on x“, then we can
construct

( ) ('All7 A

((0 ¢ﬁ 6/37 f/J)a x1)8 9(¢ﬁ ))

(28)
which are in fact the components A,(,O) =A,(e=0).

VI. EFFECTIVE ACTION

For finding equations for ¢*(x%), we substitute (27) into
(16) and see that (16) are resolved due to (24). Substituting
(27) into (17), we obtain the equations

1 y
-9, det abd P GIE,.
detos] (\/I etgs,|g" O )g &)
=+ gabgij(Dafﬂj)abfﬁﬁ =0. (29)

We should project (29) on the moduli space M = QG,
metric G = (G,5), which is defined as

Gaﬁ = <§a’ 5/3> - Lz dVOlgij(gai’ ‘fﬂj)' (30)

The projection is provided by multiplying (29) by (&,, -)
(cf., e.g., [13,14]). We obtain

B (\/ |detgzz|9abab¢ﬂ) <fa, §ﬁ> + gab<§aaDa§ﬂ>ab¢ﬂ

1
= == 0a /1498, 0010 ) Gup + (0. V)9 Dup' D)
| det gs, | (mg h‘ﬁﬁ) g+ (Ear Vy5) 97 009 O

{ 1
“ /| detgs |

0,(\/1detas g 0,07) + rgygﬂbaaqsﬂabw} —0, (31)
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where
c 1 [z : 9
Fﬁy = EG (@G/M + (%GM - 8/1Gﬁ7) with ay = @
(32)

are the Christoffel symbols and V, are the corresponding
covariant derivatives on the moduli space M of flat
connections on H>.

The equations

1
——0, det b9, p*
|detgzz| ( | de 922|9a h¢>
+ 5,9 0u/ D7 = 0 (33)

are the Euler-Lagrange equations for the effective action

Seff = L dxldxz V _det(gah)ngGa/iacgbaadqi)ﬁ (34)
2

obtained from the action functional (11) in the adiabatic
limit & — 0; it appears from the term (F,;, F) in (11)
(other terms vanish). Equations (33) are the standard sigma-
model equations defining maps from X, into the based loop
group QG.

VII. VIRASORO CONSTRAINTS

The last undiscussed equations are the constraints (18).
Substituting (27) into (18), we obtain

iy 1 i,
g”(fahfﬂj)aawabfﬁﬁ —EgabQCdg”(fai,fﬂj)acfﬁaadfﬁﬂ =0.
(35)

Integrating (35) over H? (projection on M), we get

1
Gaﬂaa¢aab¢ﬁ _EgabngGaﬂac¢a8d¢ﬂ =0. (36)

These are equations which one will obtain from (34) by
varying with respect to g,;,. Thus,

1 .
T!‘l/h = G‘lﬂaa¢aah¢ﬁ - Egahgcha/)’ac(ﬁaadqﬁﬁ (37)

is the traceless stress-energy tensor and Eqs. (36) are the
Virasoro constraints accompanying the Polyakov string
action (34).

VIII. B FIELD

In string theory the action (34) is often extended by
adding the B-field term. This term can be obtained from the
topological Yang-Mills term

PHYSICAL REVIEW D 92, 045003 (2015)

1 v c
EA/Id“x1 /detgf_lzeﬂmg(f’; , Floy, (38)

which in the adiabatic limit € — O becomes

== dxldx2€CdBaﬂaC¢aad¢ﬂv (39)

23

where

By = LZ dVOlgij(fahfﬂj) (40)

are components of the 2-form B = (B,4) on the moduli
space M = QG.

IX. REMARKS ON SUPERSTRINGS

The adiabatic limit of supersymmetric Yang-Mills the-
ories with a (partial) topological twisting on Euclidean
manifold X x X, where X and X are Riemann surfaces, was
considered in [15]. Several sigma models with fermions on
2 (including supersymmetric ones) were obtained.
Switching to Lorentzian signature and adding constraints
of type (18), which were not considered in [15], one can get
stringy sigma-model resembling NSR strings. However,
analysis of these sigma models demands more efforts and
goes beyond the scope of our paper.

Another possibility is to consider ordinary Yang-Mills
theory (11) but with Lie supergroup G as the structure
group. We restrict ourselves to the N = 2 super translation
group with ten-dimensional Minkowski space R%! as the
bosonic part. This super translation group can be repre-
sented as the coset [16,17]

G = SUSY(N = 2)/S0(9. 1), (41)

with coordinates (X%, 647), where 07 = (047) are two
Majorana-Weyl spinors in d=10,a=0,...,9,A =
1,....,32 and p = 1,2. The generators of G obey the Lie
superalgebra g = LieG,

{pra qu} = (yaC)ABéquw [fm 5Ap] = 0’
[éav 5[)’] =0, (42)
where y% are the y matrices in R%! and C is the charge

conjugation matrix. On the superalgebra g, we introduce
the standard metric

<§a§ﬂ> = 77aﬂ7 <§a§Ap> =0 and <§Ap§Bq> - Oa
(43)
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where (1,5) = diag(—1,1,...,1) is the Lorentzian metric
on R

It was shown in [18] that the action functional for Yang-
Mills theory on X, x H? with the gauge group G, defined

by (42)

1

_ 4 2
5= 2 Jo 8 xy/Idet g, |\ /det g, {2(F

+ 2F  F ) + e FFU)} (44)

abfab>

plus the Wess-Zumino-type term

1
Swz ==
T J32yxH?

A dx4fmAF£,cf’fA EIFNE (45)

dx? A dxb A dx® A dxd

yield the Green-Schwarz superstring action [17] in the
adiabatic limit ¢ — 0. Here X5 is a Lorentzian manifold
with the boundary ¥, = 0%; and local coordinates x,
a =0, 1, 2; the structure constants f, are given in [16]
and (&;) = (sin @, — cos @) is the unit vector on H? running
the boundary S' = OH>.

X. SUPERSTRINGS FROM d = 3 YANG-MILLS

Here we will show that the Green-Schwarz superstrings
with a world sheet 2, can also be associated with a Yang-
Mills model on X, x S'. When the radius of S' tends to
zero, the action of this Yang-Mills model becomes the
Green-Schwarz superstring action. So, we consider Yang-
Mills theory on a direct product manifold M3 = %, x S',
where %, is a two-dimensional Lorentzian manifold dis-
cussed before and S' is the unit circle parametrized by x* €
[0, 27] with the metric tensor gg = (g33) and g33 = 1. As
the structure group G of Yang-Mills theory, we consider the
super translation group in d = 10 auxiliary dimensions (41)
with the generators (42) and the metric (43) on the Lie
superalgebra g = LieG. As in (20), we impose framing
over S', i.e., consider the group of gauge transformations
equal to the identity over S'. Coordinates on G are X* and
047 introduced in the previous section. The 1-forms

A ={I*, 47} = {dX” —i5,,0°y*d07,de"*}  (46)
form a basis of 1-forms on G [16].

By using the adiabatic approach, we deform the metric

on ¥, x S' and introduce

ds? = g, dxtdx? = g,,dxdx” + &2(dx®)?, (47)

where e€[0,1] is a real parameter, a,b=1,2,
u,v=1,2,3. This is equivalent to the consideration of
the circle S! of radius e. It is assumed that for the fields A,
and F,,, there exist limits lim,_ A, and lim,_,F,,.
Indices are raised by ¢ and we have

PHYSICAL REVIEW D 92, 045003 (2015)
-Fab ge gedfcd Fabv
]:tﬁ =J¢ ge -7:c3 = 8_2fa37 (48)
where indices in F* are raised by the nondeformed metric

tensor.
We consider the Yang-Mills action of the form

Se —/ d’x \/‘detQZQ { (FapF) + <5Ea3fa3>},

(49)
which for ¢ = 1 coincides with the standard Yang-Mills

action. Variations with respect to A, and g,, yield the
equations

&D,F +DsF* =0,  D,F" =0, (50)

1
1oy =2 (o) = 0T

1
__gab<‘7:c3’7:63>' (51)

+(Fu3Fb3) 2

In the adiabatic limit € — 0, Egs. (50) and (51) become

DyF® =0,  D,FB =0, (52)
1 X
T, = (FuaFp3) —Egubu:cs}ﬁ)- (53)

Notice that as a function of x* € S', the field A5 belongs
to the loop algebra Lg = g @ Qg, where Qg is the Lie
superalgebra of the based loop group QG. Let us denote by
AY the zero mode in the expansion of A; in exp(ix?) € S!
(Wilson line). The generic 45 can be represented in the
form

Ay = B\ A%h + h=' 95, (54)

where the G-valued function & depends on x“ and x*. For
fixed x4 € Z,, one can choose h € QG = Map(S', G)/G.
We denote by N the space of all A3 given by (54) and
define the projection z: N — G on the space G para-
metrizing A} since we want to keep only A in the limit
e — 0. We denote by Q the fibers of the projection z.

In the adiabatic approach, it is assumed that A9 depends
on x* € X, only via the moduli parameters (X%, 6’A1’ ) €G.
Therefore, the moduli define the maps

(X.07): 5, > G (55)

which are not arbitrary; they are constrained by Eqgs. (52)
and (53). The derivatives 0,43 of A; € N belong to the
tangent space T A3N of the space . Using the projection
7n:N — G, one can decompose 9,43 into two parts,

045003-5
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TAN = TG Ty Q & 0,A; = T13¢a3 + Daeg,
(56)

where A = (a, Ap) and

T2 = 9,X* —i8,,071°0,09, TLi" = 9,07,  (57)
In (56), €, are g-valued parameters (Dse, € T 4, Q) and the
vector fields £,3 on G can be identified with the generators

$a = (fa,pr) of G.
On £,3; we impose the gauge-fixing condition

(56)
D3§A3 =0 = D3D3€a = D3aa./43. (58)

Recall that Aj is fixed by (54) and A, are yet free. In the
adiabatic approach, one chooses A, = ¢, (cf., [5,6]) and
obtains

fa.? = aaA3 - D3Aa = HaAfA_% € TAgG' (59)

Substituting (59) into the first equation in (52), we see that
they are resolved due to (58). Substituting (59) into the
action S, = lim,_,S, given by (49) and integrating over x>,
we obtain the effective action

Sy = 271'/ d?x4/| det gzz|g"bﬂgﬂﬁnaﬂ, (60)
2

which coincides with the kinetic part of the Green-Schwarz
superstring action [17]. One can show (cf., [14]) that the
second equations in (52) are equivalent to the Euler-
Lagrange equations for (X% 647) following from (60).
Finally, substituting (59) into (53), we obtain the equations

1
HZH’;fnaﬂ - EgabngHgngnaﬂ =0, (61)
which can also be obtained from (60) by variation of ¢°°.

For getting the full Green-Schwarz superstring action
one should add to (60) a Wess-Zumino-type term which is
described as follows [16,17]. One should consider a
Lorentzian 3-manifold X; with the boundary X, = 0Z;
and coordinates x%, @ = 0,1,2. On X5, one introduces the
3-form [16]

Q; = idxTI¢ A (d0'y# A dO' — 0% A d6P)n,p = dQ,.
(62)
where

Q, = —idX“ A (0'yPd0' — 6*/#d6?) with

. .0
d=dx*—:.
Ox4

PHYSICAL REVIEW D 92, 045003 (2015)

Swz = / Q, = / Q, (63)
2 Py

is added to (60) with a proper coefficient » and Sgg =
So + xSwz is the Green-Schwarz action for the superstrings
of type I, IIA, and IIB.

To get (63) from Yang-Mills theory, we consider the
manifold £; x S' and notice that in addition to (59) we now
have the components

Then the term

f03 = H€§A3
= (aOXa - iapqépyaaoeq)foé + (800Ap)§Ap3- (64)

We introduce 1-forms F := F,3dx? on X5, where F3(¢)
are general Yang-Mills fields on X3 x S! which take the
form (59), (64) only in the limit € — 0, and consider the
functional

S = /E SaFS AFYAFT AGE,(69)
3 X

where the explicit form of the constant fa,r can be
found in [16]. Therefore, the Yang-Mills action (49) plus
(65) in the adiabatic limit £ — 0 becomes the Green-
Schwarz action. This result can be considered as a
generalization of the Green result [19] who derived the
superstring theory in a fixed gauge from Chern-Simons
theory on %, x R.

XI. CONCLUDING REMARKS

We have shown that bosonic strings and Green-
Schwarz superstrings can be obtained via the adiabatic
limit of Yang-Mills theory on manifolds ¥, x H?> with a
Wess-Zumino-type term. Notice that the constraint equa-
tions (15) on the Yang-Mills energy momentum tensor
with € > 0 are important for restoring the unitarity of
Yang-Mills theory on X, x H?. More interestingly, the
same result is also obtained by considering Yang-Mills
theory on three-dimensional manifolds X, x S! with the
radius of the circle S} given by ¢ € [0, 1]. For € #0 we
have well-defined quantum Yang-Mills theory on
%, x SL. For € >0 we get superstring theories. This
raises hopes that various results for superstring theories
can be obtained from results of the associated Yang-Mills
theory on X, x S}.
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