
Green, Alexander S. (2010) Towards a formally verified
functional quantum programming language. PhD thesis,
University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/11457/1/thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33564705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Towards a formally verified functional quantum

programming language

Alexander S. Green, BSc.

A Thesis submitted for the degree of Doctor of Philosophy

School of Computer Science

University of Nottingham

July 2010

Abstract

This thesis looks at the development of a framework for a functional quantum

programming language. The framework is first developed in Haskell, looking at

how a monadic structure can be used to explicitly deal with the side-effects in-

herent in the measurement of quantum systems, and goes on to look at how a

dependently-typed reimplementation in Agda gives us the basis for a formally

verified quantum programming language. The two implementations are not in

themselves fully developed quantum programming languages, as they are embed-

ded in their respective parent languages, but are a major step towards the de-

velopment of a full formally verified, functional quantum programming language.

Dubbed the “Quantum IO Monad”, this framework is designed following a struc-

tural approach as given by a categorical model of quantum computation.

Acknowledgements

I would firstly like to thank my supervisor, Thorsten Altenkirch, for all his insights

that have proved to be invaluable for keeping my research on track, and headed

in the right direction. I would also like to thank the rest of the FP lab at the

University of Nottingham who, over the last four years, have been my first point

of call for any research related advice. A special mention should go to Jonathan

Grattage, whose advice and feedback was always greatly received.

I have been privileged enough to receive funding from both the EPSRC Net-

work on Semantics of Quantum Computation, and the Foundational Structures

in Quantum Information and Computation STREP grant, for trips to conferences

where I have met many interesting people working in related subject areas.

The use of Agda in this thesis has been helped greatly by Ulf Norell’s continuing

work on the language, and I make extensive use of Ralf Hinze’s and Andres Löh’s

implementation of lhs2TeX to typeset the Haskell and Agda code. I would like to

thank them for their ongoing work, especially the recent addition of Agda support

in lhs2TeX.

I would also like to thank my examiners, Ian Mackie and Henrik Nilsson,

for the extensive discussion and feedback that made my viva such a pleasurable

experience.

As always, I would like to thank my family, especially my Mother, whose

support and patience over the years has given me the taste for knowledge necessary

for researching this thesis.

Finally, I would like to thank Karen, whose love and support is a blessing.

i

Contents

1 Introduction 2

1.1 Introduction . 2

1.2 Background . 6

1.2.1 Related Work . 6

1.3 Overview of thesis . 9

1.4 Joint Work . 12

2 Quantum Computation 14

2.1 The history of quantum computation 14

2.2 Reversible Computation . 15

2.2.1 The history of reversible computation 15

2.2.2 An introduction to reversible computation 16

2.2.3 The relation between reversible and quantum computation . 17

2.3 An overview of quantum computation 17

2.3.1 Qubits . 18

2.3.2 Superposition . 18

2.3.3 Measurement . 20

2.3.4 Entanglement . 21

2.4 Unitary transformations . 23

2.5 The quantum gate model . 25

2.6 Quantum Algorithms . 28

2.6.1 Deutsch’s Algorithm . 28

ii

2.6.2 Deutsch-Jozsa Algorithm . 29

2.6.3 Simon’s Algorithm . 30

2.6.4 Grover’s Algorithm . 31

2.6.5 Quantum Fourier Transform 31

2.6.6 Shor’s Algorithm . 32

2.6.7 Quantum Teleportation . 34

3 A categorical model of circuits 37

3.1 Generalised reversible circuits . 37

3.1.1 Objects of FxC≃ . 37

3.1.2 Morphisms of FxC≃ . 38

3.1.3 Equalities and laws in FxC≃ 43

3.1.4 Examples of FxC≃ categories 45

3.2 Generalised irreversible computation 46

3.2.1 Morphisms in FxC . 47

3.2.2 Examples of FxC categories 48

3.3 Three equivalence laws for FxC categories 50

3.3.1 The law of garbage collection 50

3.3.2 The uselessness of garbage processing 51

3.3.3 The uselessness of heap pre-processing 51

3.4 Using the three laws: A proof of the measurement postulate 52

3.5 Remarks on the three laws . 53

4 Functional Programming 55

4.1 An introduction to functional programming 55

4.2 Haskell - A purely functional programming language 56

4.3 Effects in a purely functional setting 60

4.3.1 Monoids . 61

4.3.2 Monads . 62

4.4 Type classes in Haskell . 63

iii

4.4.1 Monoids and Monads in Haskell 65

4.5 The IO Monad and ’do’ notation 69

4.6 Reversible Computation in Haskell 73

5 QIO - The Quantum IO Monad 77

5.1 QIO in Haskell . 77

5.2 The QIO interface . 79

5.3 Quantum datatypes for QIO . 86

5.4 More on the QIO interface . 89

5.5 Ancillary qubits, and the use of ulet in QIO 92

5.6 QIO Design . 94

6 Quantum algorithms in QIO 99

6.1 Deutsch’s algorithm . 99

6.2 Quantum Teleportation . 100

6.3 Reversible arithmetic . 102

6.4 Quantum Fourier transform . 109

6.5 Shor’s algorithm in QIO . 110

7 Implementing QIO in Haskell 112

7.1 Heaps . 113

7.2 Vectors . 116

7.3 Evaluating QIO computations . 120

7.4 Remarks on QIO in Haskell . 126

8 Dependent Types 129

8.1 An introduction to Agda . 130

8.2 Proofs in Agda . 135

8.3 Monoids and Monads in Agda . 137

8.4 Reversible Computation in Agda 140

iv

9 The Quantum IO Monad in Agda 157

9.1 Introduction . 158

9.2 Classical QIO in Agda . 159

9.2.1 A formally verified semantics for unitary operations 160

9.2.2 Unitaries in QIO Agda . 165

9.2.3 QIO as an indexed monad in Agda 173

9.2.4 Evaluating classical QIO computations in Agda 176

10 Quantum QIO in Agda 178

10.1 Simulating the Complex number field in Agda 179

10.2 A formally verified semantics for unitary operations 183

10.3 Unitaries in QIO Agda . 186

10.3.1 Rotations . 188

10.4 Evaluating quantum QIO computations using Agda 193

10.5 Remarks on QIO in Agda . 196

11 QIO and other Quantum programming languages 198

11.1 Related Languages . 198

11.2 Modelling quantum computation in Haskell 199

11.3 Monads and Arrows . 204

11.4 QML . 210

11.5 Conclusions . 215

12 Discussion and Conclusions 217

12.1 Comparing the Haskell and Agda implementations 217

12.2 Further Work . 219

12.3 Conclusions . 220

12.4 Final remarks . 222

v

List of Figures

2.1 The Toffoli gate . 16

2.2 The and function (∧) embedded into the Toffoli gate 16

2.3 The Bloch sphere . 19

2.4 A universal set of quantum gates 26

2.5 The Deutsch-Jozsa Algorithm . 30

2.6 A circuit for the Quantum Fourier transform 32

2.7 Shor’s algorithm . 33

4.1 “Hello World” written in Haskell 70

5.1 The QIO API . 80

6.1 A reversible circuit for addition (taken from [VBE95]) 104

6.2 Shor’s algorithm in QIO . 110

1

Chapter 1

Introduction

1.1 Introduction

In this thesis I present my research into the field of quantum programming lan-

guages, from the perspective of a functional programmer. Quantum programming

languages are implemented to give us control over machines that use the quantum

mechanical aspects of superposition and entanglement in a computational manner.

It has been shown that such quantum computers are able to perform certain tasks

faster than their classical counterparts. For example, the most famous quantum

algorithm is Shor’s algorithm ([Sho94]) that can be used to find the factors of

large numbers, a task that is infeasible on todays classical computers because of

the complexity (exponential in the size of the number to be factored) of the best

known classical solutions. Shor’s algorithm, if run on a suitably sized quantum

computer, only has a complexity that is polynomial in the size of the number to

be factored (We cover Shor’s algorithm in more detail in section 6.5).

Although there are many other algorithms for quantum computers (E.g. see

section 2.6), their design has mainly arisen from a calculational approach, that is,

using the underlying mathematical structure of quantum mechanics to derive these

algorithms in quite a low-level manner. In computer science, it is common place to

use higher-level structures to simplify the design of algorithms, and abstract away

2

from all the low-level details. For example, computers run at the lowest level on

bits, but computer programmers use high-level languages to abstract away from

simple logic gates acting on these individual bits. As a computer scientist, it is

therefore natural to think of a quantum computer in terms of how to model the

low-level quantum mechanical system in terms of a higher-level language, or in

terms of higher level constructs within a quantum programming language.

When looking at quantum computation, there is one key aspect that is dif-

ferent than in the classical paradigm. Namely, quantum computation relies upon

measurements, or observations in the underlying quantum mechanical system,

that are modelled by a wave-function collapse. This gives rise to the fact that

measurements can cause side-effects in the entire quantum state of a system, as

when part of a quantum state is measured, the overall state collapses into a state

where this measurement outcome is now the only possible measurement outcome

for that given part of the overall quantum state. We shall look in more detail at

quantum states in Chapter 2, and go into more detail as to how measurements can

have side-effects in the rest of the quantum system (2.3.3). Many of the current

languages designed for quantum computation have no explicit way of dealing with

these side-effects, they merely happen implicitly whenever a measurement oper-

ation occurs and lead to a programming paradigm in which reasoning about the

behaviour of the programs becomes disjoint from the actual programs themselves.

That is, programs written for a quantum computer are by their nature impure,

and these languages in which side-effects occur implicitly have no defined structure

that explains what side-effects are occurring.

In functional programming, we strive to make our programs pure. We are

able to use the categorical notion of a monad to give a pure model of effect-

ful programs. This gives rise to a programming paradigm in which side-effects

must be dealt with explicitly, within the language and the programs themselves.

Haskell, as the functional programming language of choice for much of this thesis,

uses monads to model any form of effectful computation, and indeed even uses a

3

monadic structure, known as the IO Monad, to model any form of I/O in a pure

manner. Recent work ([Swi08, SA07]) has shown that a monadic approach can be

used to give a sound basis for reasoning about the behaviour of effectful programs,

as the monadic structure can be used to describe exactly the side-effects that are

able to occur. It is from this background that the idea for designing a monadic

interface to quantum computation first occurred. In this thesis I present my work

on such a monadic interface to quantum computation, which has been dubbed

the Quantum IO Monad in honour of the IO Monad. It is the monadic structure

of the Quantum IO Monad, and how this leads towards a language in which the

side-effects of measurement must occur explicitly that makes this work different

from any of the other quantum programming languages that are being developed.

The following section looks in more detail into the background of quantum pro-

gramming languages, and section 1.2.1 looks at work related to the work in this

thesis. Much of the work on the development of the Quantum IO Monad has been

published as joint work with my supervisor Thorsten Altenkirch ([AG10]), and

section 1.4 goes over this and other joint work presented in this thesis.

The design of a quantum programming language also depends on the constructs

that are to be available within the language. The operations available in the

Quantum IO Monad follow in no small part from a categorical model of quantum

circuits that is also presented in this thesis (see chapter 3). Category theory has

given rise to many ideas in functional programming (such as monads as noted

previously) as it provides a sound mathematical basis for the structures that can

be defined. In fact, there is even a category of Haskell programs, where Haskell’s

types form the objects of the category, functions definable in Haskell form the

morphisms, and functional composition denotes the composition of arrows. The

related work section (1.2.1) looks at more work that has been done using category

theory to model the structures available in quantum computation.

In computer science, it is often very important to prove that programs have

exactly the behaviour given in their specification. With the non-deterministic be-

4

haviour of quantum computation, this will become especially important for pro-

grams written for quantum machines. Currently, in many main stream languages,

these proofs must be written separately from the very programs which they are

verifying. Indeed, although there are many tools to help with such verification

of computer code, it is often thought to be a hard job to derive these proofs,

indeed a lot of code is only verified if it is to be used in areas where security

and/or safety become important. Recent work on dependent types gives rise to

languages in which the programs themselves can be thought of as proofs of their

own specification. This programs as proofs paradigm gives rise to a redevelop-

ment of the Quantum IO Monad in the dependently-typed language Agda. The

approach is still able to use a monadic structure to deal with side-effects, but now

the constructs available are also able to contain proofs that the unitary opera-

tions we define are unitary by their definition. The work given in this thesis on

a dependently-typed implementation of the Quantum IO Monad gives a proof of

concept, that such an approach may lead to a formally verified quantum program-

ming language. The verification process now becomes part of the coding process,

and the verifications are checked at compile time leading to compiled code that

would be certifiably correct with respect to its original specifications.

As it stands, there are currently no physical realisations of a scalable quantum

computer. However, research into the area is ongoing, and the number of qubits

that can be realised is growing slowly. For example, a recent experimental reali-

sation of a quantum computer was able to run Shor’s algorithm over 7 qubits, to

calculate the factors of 15 [VSB+01]. One field that has shown big advances is

that of quantum cryptography, with implementations able to distribute provably

secure keys over fibre optic networks up to 150km in length [HRP+06].

5

1.2 Background

The idea of quantum programming languages has been around for almost as long

as the idea of having a quantum computational system. Much work focuses on

how we can interface with such a device from a classical starting point. E.g. hav-

ing the quantum device as an auxiliary device controllable from some classical

hardware. This has lead to many languages being based on extensions to current

pre-existing languages, specifically common languages such as C++. Recently,

work has started to focus more on the behaviour of such a device, or more impor-

tantly the meaning of quantum programs. Keeping with the proper terminology,

recent work has started to think more about the semantics of quantum computa-

tion, and how this can best be modelled in quantum programming languages.

The work presented in this thesis follows this idea, that quantum programming

languages should be used to model the semantics of quantum computation, and

not just as an interface to a quantum device. As such, only work related to this

area is covered, and no time is spent looking at languages that don’t follow such

an approach.

1.2.1 Related Work

There has been much related work to that which is presented in this thesis, so

this section shall just cover some of the most recent related work in some of the

more specific subject areas. Firstly, there has been previous work on modelling

quantum computation in a functional setting. [MB01] proposes the idea of using

a “monadic style” for modelling quantum programming in a functional setting,

however, their implementation doesn’t quite give rise to a truly monadic structure

in the Haskell sense. Haskell is also the language of choice in [Kar03], which shows

how to model the underlying mathematical structures of quantum mechanics,

developing a framework that focuses more on this mathematical interpretation

than a programming language based approach. [Sab03] goes on to give a model of

6

quantum computing in Haskell that is designed to give programmers an intuitive

approach to quantum computation. Although this is a similar approach as taken

in the design of the Quantum IO Monad, the model proposed isn’t monadic.

More recent work, [VAS06], has looked at how quantum effects can be modelled

in Haskell using the idea of arrows. Arrows are a generalisation of monads, and this

approach allows the density matrix formulation of quantum state, along with the

idea of super-operators (operations mapping density matrices to density matrices)

to be modelled in a pure manner. This approach works very well, as measurement

can be thought of as a specific type of super-operator, allowing computations to

be defined that mix measurements with unitary operators. However, the paper

shows that in general, super-operators cannot be modelled simply as monads. The

approach taken in designing the Quantum IO Monad also follows this idea that to

model quantum computation, the languages must somehow allow measurements

to be part of the computations, and although we don’t model super-operators

explicitly, we are able to model measurements using a monadic structure. The

paper finishes off by discussing that the Haskell implementation is limited, in

that it is possible to define arrows that would not be physically realisable. The

suggestion to overcome this problem is by using a carrier language that explicitly

deals with weakening and decoherence, which can be compiled into super-operators

that are realisable in the Haskell implementation.

One such language, that explicitly deals with weakening and decoherence, is

QML [AG05, Gra06]. QML is presented as a language that doesn’t just allow

the classical control of quantum data, but introduces a form of quantum control,

whereby an arbitrary quantum state can be used in a control structure. This

comes in the form of a quantum “if” structure, whereby both branches of the if

statement can contribute to the overall computation depending on the state of the

control qubit. The work on this language gave a large input into the design of the

Quantum IO Monad, as the same approach is followed in that we have quantum

data, as well as quantum control available in our implementations. QML was

7

presented along with a compiler written in Haskell, allowing QML programs to be

compiled into quantum circuits. It has also be shown that QML programs can be

directly interpreted in terms of super-operators, and as such give the language a

constructive denotational semantics in terms of the arrows presented in [VAS06].

Another language of note is presented in [Sel04]. QPL introduces some of the

major ideas used in designing quantum programming languages that give a more

structural approach to quantum programming. QPL is a functional quantum pro-

gramming language, with features that include high-level programming structures

that include recursive procedures, and quantum data-types. The underlying se-

mantics is given in the form of a categorical model of superoperators. Work on this

categorical model has inspired much work on other structural models of quantum

computation, and we shall look at a few of these later on in this section. The

work on QPL and quantum lambda calculi has been followed up extensively in

[Val08, SV09].

There are many other quantum programming languages that can be related

to the work in this thesis, and the two language surveys [Gay06, Rud07] are both

good starting points for looking into the what is currently available.

Quantum programming languages rely heavily on their underlying semantics,

with lots of languages using quantum circuits as their target semantics. However,

using such a low-level structure as the basis for a language, means a large amount

of abstraction is necessary during language design. Much work has been devoted

to modelling the structures in quantum computation in a categorical manner,

and as such, the categorical notions arising from this work can lead to a nicer

semantics from which to design quantum programming languages. Work on a cat-

egorical model of quantum circuits is presented in this thesis, which is also used

to influence the design of the constructs available in the Quantum IO Monad. In

[AC03, AC04] a categorical model is developed that can be used as a semantics

for certain quantum protocols. This categorical model is also used in [Coe05] to

give a diagrammatic model of quantum computation, whereby computations can

8

be defined in terms of certain diagrams, and the underlying categorical structure

gives rise to rules that can be used to simplify the given diagrams. A nice example

is how a diagram that represents the teleportation protocol can be simplified to an

identity “channel” between the sending and receiving parties. A different account

is given in [Sel07], that extracts a dagger structure from the strongly compact

closed categories presented in [AC04]. The paper shows how such categories with

a dagger structure can be given another diagrammatic interpretation, but also

sketches a proof that shows how such categories can be used in equational reason-

ing. Indeed, it has been remarked that the category FQC presented later in this

thesis could be alternatively given as an instance of a dagger-complete category.

In designing the Quantum IO Monad, we have taken the approach that the side-

effects inherent in the measurement operations of quantum computation can be

modelled using a monadic structure. This work is heavily based on [SA07, Swi08],

which introduce ideas on how to reason about classical effects in functional pro-

gramming languages. They go on to extend those ideas using a dependently typed

setting to give “meaning” to the effects that can occur. Knowing the behaviour

of effects gives rise to a sound framework for reasoning about effectful programs.

As such, following a similar approach for quantum programming, should lead to

a sound framework for reasoning about quantum programs.

1.3 Overview of thesis

This thesis presents in chapter 2 an introductory overview of quantum computa-

tion. Section 2.2 begins by introducing reversible computation. Reversible com-

putation is an excellent starting point for looking at quantum computation, as

the definition of reversible computations is directly related to the definition of

unitary operators in quantum computation. Indeed, we use the classical analogue

of reversible computation in many examples throughout the thesis, such as the

classical subset of QIO, and a toy language of reversible circuits implemented in

9

Haskell and Agda. The chapter goes on to give an introduction and overview of

quantum computation. This includes superposition, measurement,and entangle-

ment in section 2.3, and goes on to look at the quantum gate model (2.5), and an

overview of some of the most famous quantum algorithms (2.6).

Chapter 3 introduces a categorical model of reversible circuits, with specific

instances of the category that model both classical reversible circuits, and quantum

circuits. The chapter goes on to describe a category of irreversible computations,

that can be embedded into the given category of reversible circuits by introducing

a notion of Heap inputs, and Garbage outputs. Much of the work in this chapter

inspires the choice of operators used later in the definition of the Quantum IO

Monad.

Chapter 4 gives an introduction to functional programming, and the functional

language Haskell. The chapter focuses on the aspects of Haskell that are used

extensively in the definition of the Quantum IO Monad, such as effects, type-

classes, monads and Haskell’s do notation. The chapter also introduces a toy

language of reversible circuits, with an evaluator function used for running the

circuits.

The following chapters look at the design of the Quantum IO Monad, and

its implementation in Haskell. An implementation of a few of the most famous

quantum algorithms written in QIO are also given. Chapter 7 finishes off with an

explanation of some of the pitfalls of the Haskell implementation of the Quantum

IO Monad and describes how a dependently-typed implementation could be used

to iron out these pitfalls.

Chapter 8 gives an introduction to dependent types, and more specifically the

dependently-typed language Agda. It looks in depth at how programs can be

thought of as proofs of their own specification, and gives a reimplementation of

the toy language of reversible circuits, in which the evaluator function doesn’t

just enable the circuits to be run, but also gives a formally verified proof that the

circuits are indeed reversible.

10

Having introduced Agda, chapter 9 goes on to look at the redevelopment of

the Quantum IO Monad in Agda, looking in detail at an implementation of the

classical subset of QIO whereby proofs of reversibility are encoded in the semantics

of the programs. The following section looks at how this is extended to the full

quantum implementation of QIO, whereby the unitarity of our monoidal operators

is encoded in the semantics of the computation. This section also introduces a

library of postulated complex number operations, with proofs of the field properties

of the complex numbers. Compiled QIO programs can be run using the underlying

floating-point representation of numbers as an estimation to the complex numbers,

giving code that can actually be run despite their being no current implementation

of the complex numbers in Agda.

It is this Agda implementation of the Quantum IO Monad that gives rise to the

choice of title for this thesis. Having QIO embedded within Agda means that it is

not yet a stand-alone quantum programming language, but more of a library for

quantum computation within Agda. However, using Agda as a parent language

does have the added benefit that we can think of QIO as being a formally verified

language in two different senses:

1. The semantics of the “unitary operators” available in QIO ensure that only

truly unitary operations can be defined. That is, every member of the USem

data-type contains a formal proof of its own unitarity.

2. The dependent-type system of Agda means that computations written using

QIO can be formally verified, in the sense that their types can ensure certain

properties of their specification. This second type of formal verification in

QIO follows directly from the use of a parent language with dependent types.

The final chapter (chapter 12) gives a comparison of the two implementations

of the Quantum IO Monad, and goes on to give some final conclusions and remarks

on the work presented in this thesis.

11

1.4 Joint Work

Some of the work in this thesis has been published previously as joint work with

my supervisor Thorsten Altenkirch. Firstly, much of the work in chapter 3 was

published in the proceedings of QPL 2006, [GA08]. Secondly, much of the work

in chapters 5, 6 and 7 is published as a chapter in the book “Semantic Techniques

in Quantum Computation” [AG10].

This thesis gives an introduction to many of the individual subject areas that

have been used heavily in my research. The introductory topics are all well known

within their respective communities, but are included herein to complement the

presentation of my own work. The following list is to clarify which parts of this

thesis present my own contributions to the subject area:

• Chapter 3 introduces a categorical model of circuits. This work was origi-

nally published as joint work with Thorsten Altenkirch in the proceedings

of QPL 2006 [GA08].

• Section 4.6 introduces a toy language of reversible circuits as an example of

reversible computation in Haskell. This toy language was implemented by

me for use in this thesis.

• Chapter 5 introduces the Quantum IO Monad in Haskell. The original work

on QIO in Haskell was joint work with Thorsten Altenkirch, which has ma-

tured into the current implementation as described in this thesis. Although

a lot of the original design decisions were joint work, the latest implemen-

tation, and corresponding code, has all been put together by me. Some of

the later developments include the unitary let operation, the instances of

quantum data for integers, and allowing any arbitrary single qubit rotation,

instead of just providing a universal set. Much of this work has also been

published in [AG10].

• Chapter 6 introduces a few of the more famous quantum algorithms imple-

mented as computations in QIO. These algorithms are all well known in the

12

field of quantum computation, but their implementations in QIO were done

by me, and have been published as part of the chapter in [AG10].

• Chapter 7 goes over the implementation of the Quantum IO Monad in

Haskell, mainly covering the implementation of the simulation functions.

The original implementation followed directly from the design of the oper-

ations in QIO which was joint work with Thorsten Altenkirch. Again, the

latest implementation, and corresponding code, has been put together by me,

including the use of restricted monads to model the equality requirements.

This work has also been published as part of [AG10].

• Section 8.4 re-implements the toy language of reversible circuits, from section

4.6, in Agda. This new implementation adds to the semantics of the circuits

a formal proof of their reversibility. This implementation of the toy language

was also defined by me for use in this thesis.

• Chapter 9 introduces all my work on an extension of the classical subset of

QIO to Agda.

• Chapter 10 introduces all my work on extending the full set of quantum

operations in QIO to Agda, and includes work on a library of Complex

numbers for Agda that contains sufficient proofs on the field properties of

complex numbers for adding some ability to reason about programs that

use the complex numbers. The actual type of complex numbers introduced

is a postulated type that compiles down to an underlying floating point

representation.

The main scientific contributions of this thesis are the use of a monadic struc-

ture to explicitly model the effectful parts of quantum computation; namely mea-

surements, and the move into a dependent type system to give a formal verification

of the unitary structures.

13

Chapter 2

Quantum Computation

2.1 The history of quantum computation

Quantum computation is a relatively new research area, even within the realms

of computer science. It’s roots lie in the ways in which we can exploit the strange

aspects of Quantum Mechanics in a computational manner. The idea of Quantum

Computation itself didn’t really appear until the 1970’s, and the first description

of how such a quantum computer could be modelled didn’t surface until Richard

Feynman’s presentation in 1981 [Fey82].

There have been many advances in the area, most importantly in the types of

quantum algorithm that could be designed to take advantage of this quantumness.

The most famous of all is Shor’s algorithm, which he first presented in 1994 [Sho94].

It offers an exponential speed up over the best known classical solution to the

factorisation problem (see section 2.6.6). Other algorithms have also surfaced

that are actually provably faster than their classical counterparts. We shall look

at some of these algorithms in more detail later in this chapter (section 2.6).

Currently much research by physicists revolves around actually being able to

implement a scalable quantum computer, which could be used to run these algo-

rithms over more than a handful of qubits. However, in computer science, we have

given ourselves the task of coming up with new languages for these hypothetical

14

large scale quantum computers that will enable a more natural approach to the

design of quantum software that can take advantage of the quantumness available.

This certainly involves coming up with languages that enable quantum algorithms

to be designed within them. This means that we want high-level constructs that

help in the design of algorithms, such as proof structures that are able to verify

the correctness of the programs being developed.

Before jumping into an introduction of quantum computation, it is good to look

at the area of classical reversible computation. Classical reversible computation is

closely related to quantum computation as the reversible nature corresponds very

well to the unitary nature of quantum computations.

2.2 Reversible Computation

2.2.1 The history of reversible computation

Reversible computation is any form of computation that can be reversed. This

means that for any change of state within the computation, enough information is

kept so that the state can be returned to its previous state without any extra input.

However, even at a very low level we come across functions that are irreversible.

An example of an irreversible function is the logical and function acting on two

boolean values (or equivalently bits). The and function returns true if and only

if both the input values are true, and returns false otherwise. This operation is

irreversible because, although we can deduce what the inputs were if the output is

true, we have no way of knowing which of the three other input states were used if

the output is false (false and false, false and true, or true and false). An example

of a reversible operation on boolean values would be the negation operation which

returns the logical negation of the input value. In fact, the negation operation is

it’s own inverse; as if we negate a boolean value twice we are back with the value

we started with.

Reversible computations are also an interesting prospect when we look at Lan-

15

x0 • x0
x1 • x1

x2 X x2 ⊕ (x0 ∧ x1)

Figure 2.1: The Toffoli gate

x0 • �

x1 • �

0
�

X x0 ∧ x1

Figure 2.2: The and function (∧) embedded into the Toffoli gate

dauer’s principle [Lan00] which states that “any logically irreversible manipula-

tion of information, such as the erasure of a bit or the merging of two compu-

tation paths, must be accompanied by a corresponding entropy increase in non-

information bearing degrees of freedom of the information processing apparatus or

its environment”. In practical terms, this means that reversible computation pro-

vides us with a way of improving the energy efficiency of computers beyond the

von Neumann-Landauer limit. This limit, given by the formula kT ln2, where k is

the Boltzmann constant and T is the temperature of the system, corresponds to

the amount of energy that must be released per bit of lost information.

Any function can be thought of as reversible if it is of a one-to-one nature, but

it is also possible to embed irreversible functions into a (larger) reversible func-

tion. So that it isn’t the job of the programmer to ensure that the computations

they produce are reversible, it is useful to look at a way of building up reversible

computations from a small (universal) set of reversible functions, along with ways

of combining these to build up arbitrary functions, which in themselves are re-

versible, but may contain or define a function that is in itself irreversible. In the

next section I shall introduce the notion of reversible circuits, and how they can

be used to build up arbitrary reversible computations.

2.2.2 An introduction to reversible computation

Reversible computations in the sense that we are looking at here, can be thought

of in terms of reversible circuits. The Toffoli gate (Figure 2.1) is an example of a

16

reversible circuit that is also universal. This means that any boolean function can

be constructed purely from Toffoli gates, along with a notion of static inputs (input

values set to a constant of either 0 or 1), and garbage (outputs that don’t form

part of the required output of the boolean function, but that are required so that

the computation is reversible). As an example, we can construct a reversible and

operation using only a single Toffoli gate, setting one of the inputs as a constant

0, and marking 2 of the outputs as garbage (Figure 2.2).

We shall talk more about constructing reversible (and embedding irreversible)

computations in Chapter 3, and shall also introduce a category of reversible cir-

cuits.

2.2.3 The relation between reversible and quantum com-

putation

Reversible computation is a good starting point to looking at Quantum compu-

tation as all Quantum computations are inherently unitary, and therefore of a

reversible nature. In fact, as we’ll see later in this thesis, the operations available

in reversible computation form a subset of the operations available in quantum

computation. A result of this relationship is that we are also able to use the

classical analogue throughout this thesis to help introduce ideas that can then be

extended into the quantum realm.

2.3 An overview of quantum computation

There are many excellent introductory texts on quantum computation, such as

[NC00], and other on-line resources such as [Pre04]. In this section, I shall give

an overview of the subject. I aim to introduce the concepts in such a way as to

complement the rest of this thesis, introducing the topics of qubits, superposition,

entanglement, unitary operators and measurement in a similar way as they are

used in the Quantum IO monad later (in Chapter 5).

17

2.3.1 Qubits

Qubits form the basis of quantum computation, and are the quantum counterpart

to bits in classical computation. In fact as computer scientists when we look at

qubits we often refer to them as having the base states |0〉 and |1〉 corresponding

to the two states a classical bit can be in (0 or 1). We’ll see later that it is possible

to use any orthogonal states as the basis for qubits, but the computational basis

of |0〉 and |1〉 seems the most natural from a computational perspective. The ket

notation (| 〉) was first devised by Dirac [Dir82], and is now extensively used in

quantum mechanics, along with its dual (the bra, 〈 |), for describing quantum

states. I shall explain a little more about the use of Dirac notation as we go on.

The main difference between qubits and classical bits is their ability to be in

more than one of the base states at the same time, forming what is known as

a superposition of states. The next section shall give more details about these

superpositions, and go on to define what it is for a superposition to exist of more

than a single qubit. Although we shall be describing qubits in terms of the states

they can represent, we can also think of qubits in terms of a physical object that

has the corresponding quantum mechanical properties, and as such, even qubits

in an entangled state can be thought of as physically separated objects.

2.3.2 Superposition

When a qubit is in a superposition of states, it can be thought of as being in both

states at the same time. However, there are some restrictions on what superpo-

sitions a qubit can be in, which are inherent in the quantum mechanical aspects

of their definition. Firstly, each base state that the super-position consists of has

a corresponding complex amplitude (in C), and we are restricted by the fact that

the sum of the squares of the absolute values of these amplitudes must be equal to

one. So a qubit in an arbitrary super-position (|ψ〉) can be thought of as being in

the state |ψ〉 = α |0〉+β |1〉 with the restriction that |α|2+|β|2 = 1 (and α, β ∈ C).

This restriction allows us to think of the possible states of a single qubit as

18

Figure 2.3: The Bloch sphere

lying on the surface of a unit sphere, commonly referred to as the Bloch sphere.

Such a representation is able to occur because global phase doesn’t affect physical

state, and any single qubit state can be rewritten such that the amplitude of the

|0〉 base state is real and non-negative. With a single qubit state reformulated in

this way, we are able to write it in terms of two angles that represent a point on

the unit sphere. That is, we have |ψ〉 = cos θ
2
|0〉+eiφsin θ

2
|1〉, with 0 6 θ 6 π, and

0 6 φ < 2π. Figure 2.3 shows a representation of the Bloch sphere showing the

single qubit states |0〉, |1〉, |0〉+|1〉√
2

and an arbitrary single qubit state |ψ〉. As an

aside, it is interesting to note that any two points that are opposite each other on

the Bloch sphere are by definition orthogonal states, and as we mentioned earlier

can be used as the basis for the state of a qubit.

The second, and main restriction that arises from quantum mechanics is the

fact that it is impossible to know which current state an arbitrary qubit is in. For

us to gain any knowledge of the state we must observe or measure the qubit. In

doing so, the quantum mechanical aspects of the qubit are lost, and it will have

collapsed into one of the original base states (|0〉 or |1〉). All is not lost however,

and the next section shall go over the details of these measurements, and what

information we can actually gain from them.

19

2.3.3 Measurement

As we have just seen, measurements on qubits will collapse those qubits into one of

their original base states. It is possible to measure a qubit in any orthogonal basis,

but we shall once again stick to the computational basis in our examples. We are

however able to gain some information about the original super-position of the

measured qubit as the probabilities of measuring either base state are determined

exactly by their corresponding amplitudes in the original super-position. In fact,

the probability of measuring a certain base state is the absolute value squared of

the corresponding complex amplitude. If we look at our examples from the Bloch

sphere, we can see how this might work in practice. The states |0〉, and |1〉 are

quite boring as they always measure to their own value, but if we now look at the

state |0〉+|1〉√
2

, which can also be written as 1√
2
|0〉 + 1√

2
|1〉, we can see that both

states have the same amplitude (of 1√
2
), which gives a corresponding probability of

1

2
for measuring either of the computational base states. This state is said to be in

an equal super-position of both the base states. More generally, for the arbitrary

state |ψ〉 = α |0〉+β |1〉 we have that the probability of measuring |0〉 as |α|2, and

the probability of measuring |1〉 as |β|2.

As an aside, another interesting view of measurement was presented in [Eve57].

From his Relative State view of quantum mechanics, measurement can be thought

of as a process that splits the universe into parallel universes, with each measure-

ment outcome occurring in one of the parallel universes. As such, the reason we

only see one outcome from a measurement is because we, as the observer, only

continue to exist in the universe in which the corresponding measured state exists.

This is slightly beyond the scope of this thesis, but is mentioned as it is one of the

views that first interested me about the field of quantum computation.

So far, we have only been looking at the case of a single qubit, the next section

shall go on to explain how a quantum system containing multiple qubits can

behave, and shall go into detail as to how and what it means for qubits to become

entangled.

20

2.3.4 Entanglement

Entanglement is a special form of superposition over a multiple qubit state. As

such, it is useful to first look at arbitrary multiple qubit states. If we look at

what happens in our classical analogue when we have multiple bits, we’ll notice

that a system containing n bits can be in any of 2n base states, namely any of

the bit strings of length n. In fact, if we move back into the quantum realm,

a system of n qubits can be in an arbitrary super-position over any of these bit

strings of length n. That is, the state of an n qubit system can be defined by

the sum over all the complex amplitudes of each of the 2n bit strings. We have a

similar restriction as for the single qubit case that the sum of the squares of the

absolute values of all the complex amplitudes must be equal to 1. For example,

the state of an arbitrary three-qubit system can be defined exactly by the sum

|ψ〉 = α |000〉 + β |001〉 + γ |010〉 + δ |011〉 + ǫ |100〉 + ζ |101〉 + η |110〉 + θ |111〉,

with the restriction that |α|2 + |β|2 + |γ|2 + |δ|2 + |ǫ|2 + |ζ|2 + |η|2 + |θ|2 = 1. (again

with α, β, γ, δ, ǫ, ζ, η, θ ∈ C)

This exponential growth in the size of the available state space starts to hint at

what gives quantum computers their increase in power over classical computers,

but we have to keep in mind how these quantum states behave upon measurement.

As we have previously seen, a single qubit will collapse into one of its base states

upon measurement, and this behaviour generalises to multiple-qubit states. Upon

measurement of all the qubits in a multiple qubit state, the whole system will be in

one of the bit string base states, again with each base state having the probability

of being measured equal to the square of the absolute value of its corresponding

complex amplitude. However, it is also possible to only measure a subset of all

the qubits in a multiple qubit state. Each time a qubit is measured, it will be in

one of it’s base states (|0〉 or |1〉), and in doing the measurement, every base state

in the multiple-qubit super-position in which the qubit was in the opposite state

is removed from the overall state of the system. That is, the measurement of a

single qubit has a side-effect that can affect future measurements of other qubits

21

in the system. This dependency between qubits is known as entanglement. As an

example we’ll look at some two qubit super-positions.

The state 1

2
(|00〉 + |01〉 + |10〉 + |11〉) is in an equal super-position of two

qubits, that is, the probability of measuring any of the two-qubit base states is

equal, namely 1

4
. This is a valid two-qubit state, but is not an entangled state

as the measurement of either of the qubits doesn’t effect the state of the other

qubit. The probability of measuring the first qubit as |0〉 is calculated by adding

the probabilities of all the two-qubit base states in which the first qubit is a 0,

namely |00〉 and |01〉. Similarly, we can calculate the probability of measuring

the first qubit as |1〉 by summing the probabilities of all the two-qubit states in

which the first qubit is a 1, namely |10〉 and |11〉. In each case here we get the

probability of 1

2
. Upon measurement, all the base-states which contain the first

qubit in the state it wasn’t measured in are removed from the overall state, and

the amplitudes are re-normalised to reflect this. So, in this example, measuring a

|0〉 or a |1〉 leaves the rest of the system in the same state, namely 1√
2
(|0〉 + |1〉),

meaning that our original state wasn’t an entangled state. It is also possible to

see that our original state wasn’t an entangled state as we could have re-written

it straight away as the tensor product (1√
2
(|0〉+ |1〉))⊗ (1√

2
(|0〉+ |1〉)). The tensor

product ⊗ is a useful operator to define the combination of quantum systems. In

fact, in using | 〉 notation it is used implicitly a lot of the time, with for example

|0〉 ⊗ |0〉 being given as simply |00〉.

If we now look at the two-qubit state 1√
2
(|00〉+|11〉), which is a bell state([Bel64])

and an example of a maximally entangled two-qubit state, we can see how entan-

glement can effect measurements. This is a valid two-qubit state, as it is customary

to leave out base states whose amplitudes are 0 when describing super-positions.

In this example, if we were to measure the first qubit, we would as before work

out the probabilities for measuring |0〉 or |1〉 by summing the probabilities for the

corresponding two-qubit base states whose first qubit is in either state. Doing this,

we again see a probability of 1

2
for measuring either of the two single qubit base

22

states. However, after measurement, when we look to see what state the rest of

the system will be in, we’ll notice that there is only one state the second qubit can

be in, namely exactly the same state as in which we have measured the first qubit.

In other words, measuring the first qubit has had the side-effect of collapsing the

second qubit into one of its base states.

It is this type of entanglement that lead to the EPR paradox [EPR35], which is

often cited today as showing that quantum mechanics violates classical intuition.

For example, classical intuition cannot explain the non-locality of measurements

that is used when defining quantum teleportation. We shall look at quantum

teleportation in some detail in section 2.6.7, and more information on the EPR

paradox can be found in [Bel64] and [Mer85].

We have talked about quantum states, which can involve super-positions, and

entanglement, but not really mentioned how these quantum states can be used

for computation. We shall now introduce the concept of unitary transformations,

and how they can be used to define quantum computations.

2.4 Unitary transformations

Unitary transformations describe the changes in state of the qubits involved in a

computation. We have seen that we can define a quantum state of n qubits in

terms of the complex amplitudes of the corresponding 2n bit strings of length n.

In fact, it is useful to be able to think of the state space of a quantum system in

terms of the state spaces of the smaller systems it is comprised of. In quantum

mechanical terminology, the state space of a single qubit is the two-dimensional

Hilbert space, which we denote H2. A Hilbert space is defined as a complex vector

space with an inner product, that is complete with respect to the inner product.

Members of such a Hilbert space are defined by complex valued vectors of the

same dimension as the Hilbert space, so the members of H2, are complex valued

vectors of dimension two. In fact, it is this representation of quantum states that

23

gives us Dirac’s bra-ket notation ([Dir82]) that we have already been using. That

is, that the inner product of a bra (〈ψ|) and a ket (|φ〉) can be given by the bra-ket

construction 〈ψ | φ〉.

|0〉 =




1

0


 and |1〉 =




0

1




More generally, from an arbitrary one qubit state |ψ〉, we can derive

|ψ〉 = α |0〉+ β |1〉 = α




1

0


 + β




0

1


 =



α

0


 +




0

β


 =



α

β




We can now generalise this quantum mechanical view to quantum states of

more than a single qubit. The state space of an n qubit system is the tensor

product of the corresponding n two-dimensional Hilbert spaces. In other words,

the state space of an n qubit system is the Hilbert space of dimension 2n, denoted

by H2n , and as such, members of this state space can be denoted by a complex

valued vector of dimension 2n whereby each element of the vector represents the

complex amplitude of the corresponding base state. For example, the two-qubit

bell state we introduced in the measurement section can be given by

1√
2
(|00〉+ |11〉) = 1√

2




1

0

0

1




If we were to use this terminology, unitary transforms for an n qubit system

would relate to a unitary complex valued matrix of dimension 2n × 2n. That

is, a matrix that when multiplied by its conjugate transpose, gives the identity

matrix. For a small number of qubits, this representation of unitary operators is

quite straight forward, but the exponential growth in the dimensions of the matrix

needed to represent a unitary means that for more than a few qubits this approach

isn’t such a useful one. The next section looks at how we can look at unitary

operators in terms of quantum gates, and circuits. These operators acting on a

24

small number of qubits, are often given in terms of their matrix representation,

and the rules governing how circuits can be constructed from these gates are

also defined in terms of the mathematical operations in the corresponding matrix

representation. Chapter 3 goes on to look at a categorical model of these quantum

gates and circuits.

2.5 The quantum gate model

The quantum gate model gives us a way of modelling unitary transformations

over more than a few qubits in a simple way. Quantum circuits are defined by

a universal set of quantum gates, and rules that govern how these gates can be

combined. The gates themselves are usually given in terms of their corresponding

matrix representation, and the combinators are given in terms of the underlying

functions on matrices that they represent. There is more than one set of universal

quantum gates, but the combinators usually boil down to parallel composition be-

ing defined in terms of the tensor product of matrices, and sequential composition

relating to matrix multiplication. In chapter 3, we present a categorical model of

circuits, and our choice of quantum gates in this model leads on to the choice of

unitary operators in our implementation of QIO (chapter 5). The quantum gate

model also relates very nicely to the classical reversible circuits we used in section

2.2.

We now look at one specific example of a universal set of gates, although other

universal sets of quantum gate do exist. We introduce here the universal family of

gates introduced in [NC00], which also includes proofs of their universality (pages

188 to 198), in the sense that any unitary operator can be approximated up to an

arbitrary accuracy. The family consists of the Hadamard gate, the π
8

gate, and the

CNOT gate. Figure 2.4 gives the diagrams that we shall use to represent these

gates, along with the corresponding matrix representations of the unitaries (We

omit the phase gate here as it can be defined in terms of two π
8

gates).

25

H ≡ 1√
2

[
1 1
1 −1

]
π
8 ≡

[
1 0
0 ei π

4

]

•
X

≡




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Figure 2.4: A universal set of quantum gates, consisting of the Hadamard gate,
the π

8
gate, and the CNOT gate.

Arbitrary unitary operations can now be defined as quantum circuits using

these gates along with the operations of sequential composition and parallel com-

position. Sequential composition joins circuits of the same arity (number of qubits)

in sequence, and corresponds to matrix pre-multiplication of the first unitary by

the second unitary. Parallel composition joins circuits so that they run in parallel

over different qubits (giving rise to a circuit whose arity is the sum of the underly-

ing arities). Parallel composition corresponds to the tensor product of the matrix

representations.

As an example, we can use sequential composition to show that the Hadamard

gate is its own inverse,

H H ≡ 1√
2




1 1

1 −1


 · 1√

2




1 1

1 −1


 ≡




1 0

0 1


 ≡

Another example that uses both parallel and sequential composition is to show

that following circuits are equivalent.

H • H

H X H

_ _�
�
�
�
�

�
�
�
�
�

_ _

_ _�
�
�
�
�

�
�
�
�
�

_ _

_ _ _ _ _ _�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _

≡ X

•


≡




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0







The groupings in the diagram represent the order in which we shall perform

the steps of the matrix calculations (Although in practise the order in which we

do the two matrix multiplications doesn’t matter as the operation is associative).

The first step is to define the matrix representation of the unitary that performs

26

two Hadamard gates in parallel.

H

H

_ _�
�
�
�
�

�
�
�
�
�

_ _

≡ 1√
2




1 1

1 −1


⊗ 1√

2




1 1

1 −1


 ≡ 1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




Next, we calculate the unitary that is obtained by running this in sequence with

the CNOT gate.

H •

H X

_ _�
�
�
�
�

�
�
�
�
�

_ _

_ _ _ _ _ _�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _

≡




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



·1
2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



≡ 1

2




1 1 1 1

1 −1 1 −1

1 −1 −1 1

1 1 −1 −1




Finally, we calculate the unitary that we obtain from running the previous unitary

in sequence again with the two parallel Hadamard gates.

H • H

H X H

_ _�

�

�

�

�

�

�

�
_ _

_ _�

�

�

�

�

�

�

�
_ _

_ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _

≡ 1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



·1
2




1 1 1 1

1 −1 1 −1

1 −1 −1 1

1 1 −1 −1



≡




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0




Although we have given this universal family of circuits, in the rest of this

section we shall use gates that represent arbitrary single qubit rotations, which are

given along with their corresponding matrix representation. We also use controlled

versions of larger unitaries, for ease of notation, although these too could be

derived from this universal family of gates we have given above.

Having introduced the concept of quantum computation, we shall now go on

to look at some famous quantum algorithms and how they use quantum states,

along with entanglement to achieve classically infeasible tasks. In many cases, we

also include the corresponding circuit diagram that represents the algorithm as a

quantum computation.

27

2.6 Quantum Algorithms

2.6.1 Deutsch’s Algorithm

Deutsch’s algorithm [Deu85] is often used as an introduction to quantum algo-

rithms as it is in essence the most simple algorithm to have been found that can

be proved to give a result faster than the classical solution to the same problem.

It involves being given an unknown function that takes a single boolean value as

input, and returns a single boolean value as its output. You are then asked to find

out whether the function you have been given is balanced or constant whilst only

applying the function as few times as possible. Classically, it is easy to show that

you must apply the function twice to get a certain result (once for each possible

input value), but using Deutsch’s algorithm, it is possible to apply the function

only once (albeit over a quantum state), and gain enough information from the

result to determine the solution to the original problem. It is a simple algorithm

to introduce first as it only uses two qubits, and as such is small enough so that

we can go through all the mathematical detail without filling too much space.

• We start with the top qubit in the state |0〉 and the bottom qubit in state

|1〉.

|0〉 H x x H

Uf

|1〉 H y y ⊕ f(x)

• After the First Hadamard gates we are left with the top qubit in the |+〉

state (|0〉+ |1〉), and the bottom qubit in the state |−〉 (|0〉 − |1〉).

|0〉+ |1〉 x x H

Uf

|0〉 − |1〉 y y ⊕ f(x)

• Depending on the function f we have one of four outcomes

28

– f(x) = 0, has no overall effect on either qubit so we are left in the state

(|0〉+ |1〉)(|0〉 − |1〉) as before.

– f(x) = 1, adds 1 onto the value of the bottom qubit for both parts of the

value of the top qubit, so we are left with the state (|0〉+ |1〉)(|1〉−|0〉),

which is equivalent to the state −(|0〉+ |1〉)(|0〉 − |1〉).

– f(x) = x, adds 1 onto the value of the bottom qubit for the |1〉 part of

the top qubit, so we are left with the state |0〉 (|0〉−|1〉)+ |1〉 (|1〉−|0〉),

which is equivalent to the state |0〉 (|0〉 − |1〉) − |1〉 (|0〉 − |1〉) and can

be simplified to (|0〉 − |1〉)(|0〉 − |1〉).

– f(x) = ¬x, adds 1 onto the value of the bottom qubit for the |0〉 part of

the top qubit, so we are left with the state |0〉 (|1〉−|0〉)+ |1〉 (|0〉−|1〉),

which is equivalent to the state |0〉 (|1〉 − |0〉) − |1〉 (|1〉 − |0〉) and can

be simplified to (|0〉 − |1〉)(|1〉 − |0〉) or −(|0〉 − |1〉)(|0〉 − |1〉).

• We can see that for the constant cases (f(x) = 0 and f(x) = 1) we have

the states ±(|0〉 + |1〉)(|0〉 − |1〉), and for the balanced cases (f(x) = x and

f(x) = ¬x) we have the states ±(|0〉− |1〉)(|0〉− |1〉). We can now apply the

final Hadamard in both cases.

± |0〉+ |1〉 H ± |0〉
|0〉 − |1〉 |0〉 − |1〉

± |0〉 − |1〉 H ± |1〉
|0〉 − |1〉 |0〉 − |1〉

• As global phase (the ±) is not observable under measurement, we can now

measure the top qubit and ascertain exactly whether the original function

was one of the balanced or one of the constant functions, measuring a |1〉 or

a |0〉 respectively.

2.6.2 Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm [DJ92] is an extension to, and generalisation of,

Deutsch’s algorithm to determine whether a boolean function of an arbitrary num-

ber of inputs, but still only one output, is balanced or constant (and it is guaran-

teed to be one of these). For a given function which takes n input booleans, there

29

|0〉⊗n
H⊗n x x H⊗n

Uf

|1〉 H y y ⊕ f(x)

Figure 2.5: The Deutsch-Jozsa Algorithm

is now an input domain of size 2n, and classically it can be seen that in the worst

case the function will have to be applied to one more than half of these possible

inputs (2n−1 + 1) to see if the function is balanced or constant. However, just as

before for Deutsch’s algorithm, we can use the Deutsch-Josza algorithm to attain a

solution having only had to apply the given function once (again, over a quantum

state). The algorithm works in a very similar way to Deutsch’s algorithm, requir-

ing one more qubit than the number of inputs to the boolean function. Figure

2.5 shows us the circuit for the Deutsch-Jozsa algorithm, where a measurement of

the top n qubits after the application of the circuit will reveal whether the input

function f was constant or balanced.

2.6.3 Simon’s Algorithm

Simon’s algorithm [Sim94] is another quantum algorithm that was shown to give

a solution faster than the best possible classical solution. It gives the solution to

a very specific (somewhat contrived) problem, in a time exponentially faster than

the best known classical solution. We mention it briefly here as it is often cited

as the inspiration behind Shor’s factorisation algorithm which we look at below.

The problem involves being given a function f : 0, 1n → 0, 1m with m > n.

The function is guaranteed to be either one-to one, or there exists a bit string

of length n (s), such that for any pair of different inputs to the function (x,y),

f(x) = f(y) if and only if x ⊕ s = y (and y = x ⊕ s). Simon’s algorithm is then

able to determine which of the cases the function falls into, and in the second case

is able to return the value of s. Simon described this algorithm as being a solution

to the problem Is a function invariant under some xor-mask?.

30

2.6.4 Grover’s Algorithm

Grover’s algorithm [Gro96], otherwise known as Grover’s database search algo-

rithm, was discovered by Lov Grover in 1996. It is a quantum algorithm for

searching an unsorted database. It gives a quadratic speed-up over the fastest

classical solution, which is a linear search. For a database of size N , we must

encode a quantum state over N distinct base-states, and define a unitary that is

able to add a negative phase only to the base state that represents the element we

are searching for. Grover showed that such a unitary is able to be defined, and

used in a probabilistic quantum algorithm to return the state being searched for.

2.6.5 Quantum Fourier Transform

Although not necessarily thought of as a quantum algorithm in its own right,

the quantum Fourier transform is used in many other quantum algorithms to

extract certain information we want from a quantum super-position of states.

More precisely, the quantum Fourier transform is used to increase the amplitudes

of certain states in a super-position that represent the states that are “useful” for

gaining the result of certain quantum algorithms. This is a very over-simplified

view of what the quantum Fourier transform does, but this view of it is the basis

for how Shor defined his factorisation algorithm. His algorithm uses the quantum

Fourier transform to extract the period of a modular exponentiation function, from

a super-position of the results of the modular exponentiation function applied to an

equal superposition of its possible input states. The quantum Fourier transform

can basically be thought of as the fast discrete Fourier transform applied to a

quantum register. The discrete Fourier transform can be thought of as mapping

functions in the time domain into functions in the frequency domain. In other

words, decomposing a function into a series of sinusoidal functions of different

frequencies. An excellent derivation of the quantum Fourier transform is given in

[NC00] on pages 216 to 221. The circuit they derive is given here in figure 2.6 for

reference.

31

|j1〉 H R2 · · · Rn−1 Rn · · · · · · |0〉+ e2πi0.j1...jn |1〉

|j2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉+ e2πi0.j2...jn |1〉
.
.
.

.

.

.
.
.
.

.

.

.

|jn−1〉 · · · • · · · • · · · H R2
|0〉+ e2πi0.jn−1jn |1〉

|jn〉 · · · • · · · • · · · • H |0〉+ e2πi0.jn |1〉

Figure 2.6: A circuit for the Quantum Fourier transform, where Rk is given by

the unitary

[
1 0

0 e
2πi

2k

]

2.6.6 Shor’s Algorithm

Shor’s algorithm is possibly the most famous of all the quantum algorithms as

it provides an exponential speed up over the fastest known classical solution to

what is thought to be a classically infeasible operation (requiring a process that

runs for an exponential amount of time compared to the input). Shor showed

[Sho94] that finding the prime factors of a large integer could be restated as the

problem of finding the period of a specifically constructed modular exponentia-

tion function, and he went on to give a quantum algorithm that could solve this

task in polynomial time. This polynomial time solution does however require a

suitably sized quantum computer with enough qubits to encode both the input

and output integers, which is many more than the handful available in current

implementations (such as [VSB+01]).

Shor’s algorithm is sometimes referred to as the “Killer Application” for quan-

tum computers. This nomenclature came about because factorising large numbers

was thought to be so computationally infeasible that it forms the basis of the RSA

encryption protocol ([RSA77]). The RSA encryption protocol is a very widely used

public-key protocol for sending secure information over public channels such as the

Internet. It works on the principle that multiplying 2 large prime numbers (p and

q) is computationally easy, and a public and private key can be computed from

the result (n = p ∗ q). However, if it is possible for an eavesdropper to compute p

and q from n, then it is also possible for them to work out the private key. If we

32

|0〉 / H⊗t
|k〉

• QFT † ?>=<89:;M

|1〉 / akmodN

Figure 2.7: Shor’s algorithm

can now factor large numbers in polynomial time, this encryption scheme has ef-

fectively been broken allowing anyone with a sufficiently large quantum computer

to intercept and decode encrypted data.

Peter Shor exploited the fact that the factors of a number can be computed

from the period of a given modular exponentiation function. In fact, the exponen-

tiation function required was shown to be of the form f(x) = axmodN where N

is the number we wish to factorise, and a is known to be co-prime to N . That is,

that the greatest common divisor of a and N is 1. Calculating the greatest com-

mon divisor of two numbers can be done efficiently classically, using the Euclidean

algorithm, and hence finding values for a can also be done classically. Depending

on the value of a, it is possible that the period of this function can be used to find

factors of the input. Shor discovered that finding the period of this function (and

other periodic functions) can be done efficiently on a quantum computer. The

efficiency of this period-finding algorithm comes directly from the use of quantum

parallelism.

Two quantum registers (of sufficient number of qubits to represent N) are ini-

tialised into the state |~0〉. The first of these two quantum registers is placed into

an equal super-position of all its possible base states (using Hadamard rotations).

This register (|k〉) is then used as x in our exponential function f(x) = axmodN

such that the result of the function is stored in the second quantum register. At this

point in the computation our quantum registers will be in the state (|k, akmodN〉)

in such a way that each value of k in the first register is entangled with its corre-

sponding akmodN in the second register. Shor goes on to show that the application

of a discrete Fourier transform to the first register will (with high probability) yield

the period of the given input function.

33

Figure 2.7 shows a slightly idealised quantum circuit representation of the part

of Shor’s algorithm that calculates the period of the given modular exponentiation

function. The period obtained as a result of running this quantum circuit (p) can

be used to find the factors of the original input by noting that as long as p is even,

and a
p

2 6= −1modN , then the greatest common divisors of a
p

2 + 1 and a
p

2 − 1 are

factors of N.

2.6.7 Quantum Teleportation

Quantum teleportation can be thought of as the transfer of an arbitrary quantum

state from one qubit to another, and is achieved without knowing the original

(input) state. The basic process involves having an entangled pair of qubits, which

may be physically separated. The unknown (input) qubit is entangled with one of

the qubits from the original entangled pair, and these are both then measured. The

outcome of these measurements must then be transmitted (classically) to the site of

the second qubit from the entangled pair, and depending on these measurements

one of 4 adjustments is made to the second qubit. This second qubit is then

in the state of the original (input) qubit. The operation doesn’t break the no-

cloning theorem as the state of the original qubit is collapsed upon measurement,

and the operation doesn’t allow faster than the speed of light communication

as the classical information can only be transmitted at this limiting speed. An

example text-book description of quantum teleportation as taken from ([NC00])

is as follows:

Alice and Bob met long ago but now live far apart. While together

they generated an EPR pair, each taking one qubit of the EPR pair

when they separated. Many years later, Bob is in hiding, and Alice’s

mission, should she choose to accept it, is to deliver a qubit |ψ〉 to Bob.

She does not know the state of the qubit, and moreover can only send

classical information to Bob. Should Alice accept the mission?

Intuitively, things look pretty bad for Alice. She doesn’t know the

34

state |ψ〉 of the qubit she has to send to Bob, and the laws of quantum

mechanics prevent from determining the state when she only has a

single copy of |ψ〉 in her possession. What’s worse, even if she did

know the state |ψ〉, describing precisely takes an infinite amount of

classical information since |ψ〉 takes values in a continuous space. So

even if she did know |ψ〉, it would take forever for Alice to describe the

state to Bob. It’s not looking good for Alice. Fortunately for Alice,

quantum teleportation is a way of utilising the entangled EPR pair

in order to send |ψ〉 to Bob, with only a small overhead of classical

communication.

In outline, the steps of the solution are as follows: Alice interacts

the qubit |ψ〉 with her half of the EPR pair, and then measures the two

qubits in her possession, obtaining one of four classical results, 00, 01,

10, and 11. She sends this information to Bob. Depending on Alice’s

classical message, Bob performs one of four operations on his half of

the EPR pair. Amazingly by doing this he can recover the original

state |ψ〉!

The following quantum circuit gives a more precise description of quantum

teleportation.

|ψ〉 • H 76 5401 23M1 •

EPR
X 76 5401 23M2 •

XM2 ZM1 |ψ〉

The top two lines represent Alice’s qubits, that is the input qubit (which is in the

state |ψ〉), and her qubit from the EPR pair. The bottom line represents Bob’s

qubit. Alice entangles the input qubit with her EPR pair qubit using a controlled

Not operation. Then she performs a Hadamard rotation on the input qubit before

measurement (which is equivalent to a measurement in the Hadamard basis). The

double lines coming from the measurements represent the classical data that she

sends to Bob, who correspondingly has to perform (conditionally depending on the

35

classical bits) an X and a Z rotation on his qubit, which will then be in the state

|ψ〉. It is also clear to see that the state of the original input qubit has been lost

as it will be in one of the base states, |0〉 or |1〉, depending upon the measurement

outcome.

36

Chapter 3

A categorical model of circuits

In this chapter I introduce work on a categorical model of both reversible and

quantum circuits [GA08]. Our model, dubbed FxC≃, works on the premise that

irreversible computations are a derived notion, and the underlying reversibility

comes from the physical nature of the universe. In the previous chapters we have

seen how both reversible and quantum computations can be thought of in terms of

circuits, or more precisely a universal group of circuits along with notions of how

these circuits can be composed (both in serial and in parallel). The categorical

model introduced in this chapter introduces a family of such universal circuits and

compositions as morphisms in the defined category. Our diagrammatic approach

means that defining circuits in the category is as easy as piecing together smaller

circuits, while the underlying categorical structure ensures the correctness of all

the mathematical properties.

3.1 Generalised reversible circuits

3.1.1 Objects of FxC≃

In a categorical setting, it is useful to look at groupoids when defining reversible

computations. Groupoids are a form of category in which every morphism is

in fact an isomorphism, that is, that every morphism in the category has an

37

inverse morphism in the category such that each morphism and its inverse form

an isomorphism. The category FxC≃ is such a groupoid, and shall be defined as

a strict groupoid in which we can assume any isomorphic objects are in fact equal.

So, we have the groupoid FxC≃, with every morphism ψ ∈ FxC≃(a, b) having an

inverse ψ−1 ∈ FxC≃(b, a). The strictness of the groupoid means that FxC≃(a, b)

is empty if a 6= b, so we can define morphisms as members of homsets FxC≃(a, a),

and simplify our presentation by writing FxC≃ a in place of FxC≃(a, a).

To allow our morphisms to be composed in a parallel manner, we define that our

category (or groupoid) FxC≃ has a strict monoidal structure, with identity object

I, and the operation ⊗ which corresponds directly to the parallel composition

operation. There is also a special object corresponding to the Booleans, which

can be denoted by N2. All other objects in the category are generated directly

from these three objects, and we can again simplify our presentation by using the

natural numbers (N) to denote the objects. More specifically, the natural number

a ∈ N shall be used to denote the object 2a, and our three generator objects can

be denoted such that I = 0, N2 = 1, and for objects a and b, a⊗ b can be thought

of as addition of the natural number representation of a and b (a+ b).

3.1.2 Morphisms of FxC≃

Now we have defined our category, and its objects, we can start to define the

morphisms of the category. It is the morphisms of the category that directly relate

to reversible circuits, and as such we shall present them diagrammatically, and in

an inductive manner. As FxC≃ is a groupoid, we shall also present the inverses of

the given morphisms. These inverses, as would be expected, also define the inverses

of the circuits that the morphisms represent. A morphism ψ ∈ FxC≃ a, can

simply be thought of as a reversible circuit with both a inputs, and a outputs, and

is hence why the strictness of the groupoid can be thought of as the preservation

of information in our circuits.

The first morphism we shall define corresponds to rewirings in the circuit

38

model. A set of (neighbouring) wires can be thought of as the initial segment of

the natural number representation of the objects. E.g. each wire (or N2 object) is

denoted by its corresponding natural number, and the set of n wires is denoted by

the set of natural numbers less than n. We shall write [a] = {i ∈ N | i < a} as such

an initial segment of N. Rewirings can then be thought of as bijections acting on

these initial segments. For φ : [a] ≃ [a], we have the morphism wiresφ ∈ FxC≃ a

as the associated rewiring. As an example, we can give the following rewiring

diagram:

x0
??

?? x1

x1

����
??

?? x2

x2

���� x0

which would be defined by the bijection φ(0) = 2, φ(1) = 0, and φ(2) = 1, and

hence the morphism wiresφ ∈ FxC≃, 3. The existence of wires follows from the

strict monoidal structure of FxC≃, and the identity morphism (ida) is just a

special case of wires (where the bijection φ : [a] ≃ [a], is just the identity). The

inverse of a rewiring morphism is defined exactly by the inverse of the embedded

bijection. For example, for the rewiring given above, we would have the inverse

bijection φ−1 : [a] ≃ [a], such that φ−1(0) = 1, φ−1(1) = 2, and φ−1(2) = 0. Giving

rise to the inverse morphism wiresφ−1 ∈ FxC≃, 3 and the diagram (keeping the

same labels as before):

x1
??

?? x0

x2
??

??
���� x1

x0

���� x2

The second morphism we can define corresponds to the sequential composi-

tion of circuits. Thinking of the circuit model, it is quite straightforward to realise

that only circuits of the same arity can be joined in sequence, e.g the number of

output wires from the first circuit must correspond exactly to the number of input

wires to the second circuit. In FxC≃ we define sequential composition by the

operation ◦, such that given ψ, φ ∈ FxC≃a we can construct φ ◦ ψ ∈ FxC≃ a.

Diagrammatically, sequential composition is achieved by simply joining the output

39

wires of the first circuit (ψ), with the input wires of the second circuit (φ).

ψ φ

_ _ _ _ _�

�

�

�
_ _ _ _ _

The inverse of a sequential composition corresponds to a composition of the in-

verses of the original sub-circuits. This composition is also a sequential composi-

tion, but the inverses are joined in the reverse order. So, in FxC≃ a, the inverse of

the above sequential composition is achieved using φ−1 and ψ−1 to give ψ−1 ◦φ−1.

Or, diagrammatically this is represented by:

φ−1 ψ−1

_ _ _ _ _ _ _�
�
�

�
�
�

_ _ _ _ _ _ _

The third morphism we can define corresponds to the parallel composition

of circuits. In a similar manner to sequential composition, it takes two other

morphisms as arguments, and places them such that they are in parallel with one-

another. Unlike for sequential composition, the two sub-circuits need not be of the

same arity, and it is this parallel composition that can be thought of as the tensor

product (⊗) of the underlying monoidal structure. The arity of the new circuit that

has been constructed is simply the sum of the arities of the underlying sub-circuits.

So, we can define parallel composition as, given ψ ∈ FxC≃a and φ ∈ FxC≃b we

can construct ψ⊗φ ∈ FxC≃(a⊗b). The diagrammatic representation is as follows:

ψ

φ

_ _�
�
�
�
�

�
�
�
�
�

_ _

The inverse is again constructed from the inverses of the underlying sub-circuits,

ψ−1 and φ−1, and is given by ψ−1 ⊗ φ−1. As a diagram this would be:

ψ−1

φ−1

_ _ _�

�

�

�

�

�

�

�

�

�
_ _ _

40

The underlying identity object of the monoidal structure relates to the empty

circuit, that is, a circuit with zero inputs, and zero outputs. Parallel composition

as described here, along with this identity object obey all the monoid laws as

expected. (We talk more about monoids later, in section 4.3.1).

Our fourth set of morphisms correspond to circuits of arity 1, or more generally

as operations that act on a single “bit”. It is the operations we define here that can

restrict our categorical model to classical reversible circuits, or allow us to model

fully quantum circuits. These rotations are therefore any elements of FxC≃1,

and are given diagrammatically as single “bit” gates that are labelled by their

underlying single “bit” operation. We’ll see later that in the classical case the

only rotation is the Not rotation, which corresponds to logical negation, which is

its own inverse. (E.g. ¬ ∈ FxC≃1, and ¬−1 = ¬). Using this Not operation as an

example we would have the diagram

Not

In the quantum case, we would have members of FxC≃1 that represent any single

qubit rotation (i.e. a unitary operation in U(2)). Usually we would represent

a single qubit rotation as a unitary two by two complex valued matrix, and the

inverse rotation would be the conjugate transpose of that matrix. For example,

we could define the corresponding quantum Not rotation by




0 1

1 0




and use the same diagram as for the classical case. It is also the case here that

the conjugate transpose (or inverse) of the Not rotation is itself, but this is not

necessarily the case in general.

Our fifth and final morphism corresponds to a control structure in a circuit. Or

more generally, a conditional gate that uses a control wire to decide whether the

41

given argument computation should be performed. In FxC≃, this can be defined

as, given φ ∈ FxC≃a we can construct φ | ida ∈ FxC≃(N2 ⊗ a), or using our

natural number representation of objects φ | ida ∈ FxC≃(1 + a). That is, given

a circuit of arity a, we construct a conditional circuit of arity 1 + a, whereby the

extra wire is the control wire of the conditional. A typical circuit diagram for a

conditional would be:

•
φ

The conditional can be thought of such that the circuit φ ∈ FxC≃a is only applied

if the value in the control wire is true (with the identity circuit ida being applied

if the control wire is false). The inverse of the conditional morphism is once again

given by the inverse of the underlying sub-circuit. Thus given φ−1 we can construct

the conditional φ−1 | ida, which is the inverse of the original conditional. Again,

we can give this diagrammatically:

•
φ−1

The structure of the conditional morphism gives rise to a naturally symmetric

operation, namely the conditional which applies its argument circuit when the

control wire is in the false state (as compared to the true state for the conditional

defined above). For ease of notation, we shall also introduce this symmetric con-

ditional, which is defined in terms of the conditional given above, along with a

pre- and post-application of the Not rotation on the control wire. The definition

is given diagrammatically as:

��
��	
�

φ

≡ Not • Not

φ

In FxC≃ we shall denote such a negated conditional acting on the sub-circuit

φ ∈ FxC≃a as ida | φ ∈ FxC≃(1 + a).

42

This naturally leads us to a choice operator, such that given two computations

of the same size the value of the control wire is used to govern which sub-morphism

is applied. That is, given ψ, φ ∈ FxC≃a we can construct the choice operator

ψ | φ ∈ FxC≃(N2 ⊗ a) as the following circuit:

• ��
��	
�

ψ φ

_ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _

the inverse is once again given by ψ−1 and φ−1, and constructed as ψ−1 | φ−1:

• ��
��	
�

ψ−1 φ−1

_ _ _ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _ _ _

3.1.3 Equalities and laws in FxC≃

The underlying categorical infrastructure of FxC≃ gives us our standard laws

for wires, sequential composition and parallel composition. However, we would

like to also introduce some equalities that hold for our conditional morphisms,

or more specifically how the conditional operation can be distributed over the

sequential and parallel composition operations. We shall give the definitions of

these equalities in terms of our diagrammatic model.

Firstly, we have the equality that ◦ distributes over | or more precisely, that

for f, g, h ∈ FxC≃a we have (f | g) ◦ (id1 ⊗ h) = f ◦ h | g ◦ h. Diagrammatically

this can be shown as:

• ��
��	
�

h f g

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

= • ��
��	
�

h f h g

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

Secondly, we have the opposite distribution equality for ◦ and |. Such that

given f, g, h ∈ FxC≃a we have (id1 ⊗ h) ◦ (f | g) = h ◦ f | h ◦ g and the

43

corresponding diagram:

• ��
��	
�

f g h

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

= • ��
��	
�

f h g h

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

Our third equality defines how | can distribute over ◦, giving for f, f ′, g, g′ ∈

FxC≃a that (f | g) ◦ (f ′ | g′) = (f ◦ f ′) | (g ◦ g′).

• ��
��	
� • ��
��	
�

f ′ g′ f g

_ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

= • ��
��	
�

f ′ f g′ g

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

We can also give an equality for distributivity over ⊗ and |, such that given

f, g ∈ FxC≃a and h ∈ FxC≃b we have that (f | g)⊗ h = (f ⊗ h) | (g ⊗ h).

• ��
��	
�

f g

h

_ _ _ _ _ _ _�

�

�

�

�

�

�

�
_ _ _ _ _ _ _

= • ��
��	
�

f g

h h

This last equality allows us to combine the first two such that we have (h |

h) = (id1 ⊗ h)

• ��
��	
�

h h

=

h

and we can simplify this last axiom for the specific case that h is in fact the identity

ida. More precisely, we have that ida | ida = id1+a, and we can give the diagram

(in it’s most simple form) as:

•
ida

=

ida

Our last equality axiom gives a symmetry relation for |, whereby moving a

Not gate along the control wire over a choice operator can be accommodated by

44

flipping the arguments to the choice operator. More precisely, this is defined that

for f, g ∈ FxC≃a we have (¬ ⊗ ida) ◦ (f | g) = (g | f) ◦ (¬ ⊗ ida), and the

corresponding diagram:

• ��
��	
� Not

f g

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

= Not • ��
��	
�

g f

_ _ _ _�

�

�

�

�

�

�

�
_ _ _ _

3.1.4 Examples of FxC≃ categories

We mentioned briefly how there is more than one instance of an FxC≃ category,

in the sense that the category depends upon a notion of the available 1 “bit” op-

erations. The two main instances of FxC≃ that we have thought about are the

instances that relate to classical reversible computation and quantum computa-

tion. The classical instance of FxC≃ we have dubbed FCC≃, and is the category

of finite classical reversible circuits. The quantum instance of FxC≃, we have

dubbed FQC≃, and is the category of finite quantum circuits.

In FCC≃ we only have two 1 bit operators (here we use bit in its normal

meaning of binary digit), namely the logical negation operation and the identity

operation. It’s useful to note that the identity operation on 1 bit is not defined as

a rotation as it can be derived directly as id1, or just a single wire. Extensional

equality in FCC≃ can be attained by looking at circuits as permutations on the

initial segment [a], or more simply by looking at the truth tables corresponding to

the circuits. In FQC≃ we have an infinite number of rotations, which correspond

to all the possible single qubit unitary operators. Extensional equality in FQC≃

is achieved by looking at the circuits as unitary operators on an a-dimensional

Hilbert space. These can be a lot harder to calculate and compare than in the

classical case, so it’s nice to note that that FCC≃ →֒ FQC≃ and this embedding

preserves the extensional equality. This can easily be checked by looking at the

unitary operators that can be obtained only from the rotations that represent the

available classical 1 “bit” operations, and noting that they only contain 0s and 1s

45

in their matrix representation. Such matrices in effect only define permutations,

in the same way as we’re interpreting extensional equality in FCC≃.

3.2 Generalised irreversible computation

Having defined a category of reversible circuits, I shall now go on to look at how

we can derive the notion of irreversible computations from our notion of reversible

circuits. In fact, we shall define another category FxC of (possibly) irreversible

computations. Every morphism of the category FxC will indeed represent an

irreversible computation, although it will actually take the form of a triple, ψ′ =

(h, g, ψ), whereby h is a set of heap inputs, g is a set of garbage outputs, and ψ is

the underlying reversible computation. So, a morphism in FxC(a, b) can be given

as a morphism in FxC≃((a⊗h), (b⊗g)) with the requirement that (a⊗h) = (b⊗g).

Indeed, this model of irreversible computation is used in defining QML [AG05].

If we have an irreversible computation, or more precisely, a morphism (h, g, ψ) ∈

FxC, we can extend our diagrammatic model of the underlying reversible compu-

tation ψ ∈ FxC≃, to a diagrammatic model representing the irreversible compu-

tation by explicitly marking the heap inputs, and the garbage outputs as such.

a
ψ

b

h
� g�

We can also see that any circuit in FxC≃ has an equivalent circuit in FxC, such

that the set of heap inputs is empty, and the set of garbage outputs is also empty.

More formally, we shall denote this as a lifting by having, for any ψ ∈ FxC≃a a

lifted version ψ̂ ∈ FxC(a, a), with ψ̂ = (∅, ∅, ψ). This could also be given as the

following predicate:

ψ ∈ FxC≃a

ψ̂ ∈ FxC(a, a)

46

3.2.1 Morphisms in FxC

We have seen that the irreversible computations in the category FxC are defined

as circuits in the FxC≃ category, along with a set of heap inputs, and a set of

garbage outputs. The underlying circuits of these irreversible computations are

constructed as morphisms in the FxC≃ category, and as such can use all the

morphism described for FxC≃. However, we are also able to define some mor-

phisms that exist specifically for the computations in FxC. Firstly, we can define

sequential composition of irreversible computations. If we are given irreversible

computations α = (hα, gα, φα) ∈ FxC(a, b), and β = (hβ, gβ, φβ) ∈ FxC(b, c),

then we can define β ◦ α ∈ FxC(a, c) as:

a
φα φβ

c

hα
�

99
99 gβ

�

hβ
�

���� gα
�

More precisely, two irreversible computations can be composed in sequence if the

number of outputs from the first computation is equal to the number of inputs

to the second computation. The computations are combined by wiring up said

outputs to said inputs. The heap inputs to the second computation must also be

thread through from the start of the computation, and the garbage outputs from

the first computation must be thread through to the end of the computation.

The special case of wires that represents the identities in FxC≃ can be directly

lifted to represent the equivalent identities in FxC, or more specifically idFxC

a =

̂idFxC
≃

a .

We can also lift the monoidal structure of the underlying FxC≃ circuits to

give FxC an equivalent monoidal structure. This lifting allows us to define a

form of parallel composition for irreversible computations in FxC. First, we can

simply lift the neutral element of the tensor, the empty circuit, by using our

lifting operation previously defined IFxC = ÎFxC
≃

. The definition of ⊗ is also

inherited from the underlying FxC≃ category, and can be defined such that given

α = (hα, gα, φα) ∈ FxC(a, b) and β = (hβ, gβ, φβ) ∈ FxC(c, d), we can have

47

α⊗ β ∈ FxC(a⊗ c, b⊗ d) as:

a
φα

b

c
44

44
4

44
44

4 d

hα
�

φβ

 gα
�

hβ
� gβ

�

Again, rewirings are used to thread the heap inputs, and garbage outputs so

that they are grouped together at the beginning, and end, of the computation

respectively.

3.2.2 Examples of FxC categories

As for the FxC≃ category of reversible circuits, the two examples of FxC cat-

egories correspond to classical and quantum computation respectively. In fact,

we are just able to extend our two examples, FCC≃ and FQC≃, from above. In

the classical case we are able to extend upon the category FCC≃ of reversible

circuits to give us the category FCC of finite classical computations. In the quan-

tum case, we extend on the category FQC≃ of quantum circuits to give us the

category FQC of finite quantum computations. Extending upon our definitions

for extensional equality for the FxC≃ categories, we can easily derive a notion of

extensional equality for the classical case. Finite classical computations (or the

morphisms) in FCC≃ can be thought of as functions acting upon finite sets. For

the computation (h, g, φ) ∈ FCC(a, b), we can define (0h,−) ∈ [a] → [a ⊗ h] as

an initialisation function that initialises the necessary number of heap inputs, and

we can define πg ∈ [b ⊗ g] → b as a projection function that projects out the

garbage, returning only the b results as defined by the computation. The whole

computation can then be interpreted as πg ◦ JφK ◦ (0h,−) ∈ [a]→ [b]. So, in other

words, the equality of the underlying circuit φ, with respect to only the non-heap

inputs, and the non-garbage outputs, can be used.

Extensional equality in the quantum case, FQC, raises a few more questions.

We are able to interpret our finite quantum computations as superoperators (see

48

[Sel04, VAS06], or [Gra06] for an implementation in Haskell). Superoperators are

morphisms on density operators, which are positive operators on the a-dimensional

Hilbert space. A superoperator f ∈ Super(a, b) is a linear function mapping

density operators on a to density operators on b, which preserve the trace and

are stable under ⊗. Analogously to the classical case, we interpret (h, g, φ) ∈

FQC(a, b) as trg ◦ JφK ◦ 0h ⊗ − ∈ Super(a, b), where JφK ∈ Super(h ⊗ a, g ⊗ b)

is the superoperator associated to the unitary operator given by interpreting the

reversible circuit φ. 0h ⊗ − ∈ Super(a, a ⊗ h) initialises the heap and trg ∈

Super(g ⊗ b, b) is a partial trace which traces out the garbage.

The equality we have used in the classical case doesn’t just lift over this defi-

nition of quantum computations. There are cases in which the garbage may have

become entangled with the output qubits, and the tracing out of the garbage is to

all intents and purposes the same as measuring it (see [NC00] p187). For example,

in the classical case the following two circuits would be equivalent:

•
�

Not
�

≡

However, this equivalence does not hold when we move into the category of fi-

nite quantum computations FQC. This is because in quantum computation the

control wire (or qubit) can become entangled with the target wire (qubit). For

example, think of the case when the input is in the state 1√
2
(|0〉+ |1〉) (the second

input is in the state |0〉 by the definition of a heap). The controlled Not operation

leaves the overall state as 1√
2
(|00〉+ |11〉), and measurement of the garbage leaves

the output qubit in one of the states |0〉 or |1〉, each with probability 1

2
. Neither

of these states being the same as the input state. As it stands, this doesn’t cause

a problem in our model, as we have no rules that would be able to prove this

equivalence. However, there are other forms of equivalence that do hold in both

FCC and FQC, and we would like to look at how we can start to define these

forms of equivalence. The approach we take is to define some equivalence rules

49

that do hold in FQC (and hence FCC), and show how these can be used to prove

certain larger equivalences that we know do hold for quantum computations. The

example we give here is an instance of von Neumann’s measurement postulate.

• •
�

Not
�

�
Not

�

≡ •
�

Not
�

The next section goes on to look at three laws we have developed that can be used

to prove such an equivalence, along with a description of just such a proof.

3.3 Three equivalence laws for FxC categories

We start this section by introducing the three laws we have developed that are

used to try and define the equivalences that hold between computations in both

the FCC and FQC categories. The first law is dubbed “The law of garbage

collection”, the second law is dubbed “The uselessness of garbage processing”,

and the third law is dubbed “The uselessness of heap pre-processing”. There

is somewhat of a symmetry between the last two laws, but we’ll go on to see

how a side condition of the third law takes away a lot of the elegance of this

symmetric relationship. The next three subsections present the laws, along with

their diagrammatic representations.

3.3.1 The law of garbage collection

If a circuit can be reduced into two smaller circuits such that one part of the

circuit only acts on heap inputs and on garbage outputs, then that part of the

circuit can be removed.

A f B

H
� g G

�

_ _�

�

�

�

�

�

�

�
_ _

≡ A f B

50

3.3.2 The uselessness of garbage processing

If a circuit can be reduced into two smaller circuits such that one part of the

circuit only has an effect on garbage outputs, then that part of the circuit can be

removed.

A
f

B

H
� g G

�

≡ A
f

B

H
�

G
�

This can be alternately stated as saying that if the only outputs of (part of) a

circuit are garbage outputs, then this is equivalent to just having garbage.

g � ≡ �

This second law can be used to simplify the first law so that a wire that only

connects the heap to the garbage is equivalent to having nothing (or an empty

computation).

� � ≡ •

3.3.3 The uselessness of heap pre-processing

If a circuit can be reduced into two smaller circuits such that one part of the circuit

only has effect on heap inputs, and the effect on the zero vector is the identity,

then that part can be removed.

if h~0 = ~0 then

A
f

B

H
�

h G
�

≡ A
f

B

H
�

G
�

An alternate notation for this would again be to state that if (part of) a circuit

only has heap inputs, and its effect on the zero vector is the identity, then this is

equivalent to just having a heap.

if h~0 = ~0 then

�
h ≡ �

51

3.4 Using the three laws: A proof of the mea-

surement postulate

As has been previously mentioned, we can use our three laws to prove the mea-

surement postulate as given at the end of section 3.2.2. This proof can be given

in a diagrammatic fashion as follows.

As the embedding of FQC in FQC≃ is full and faithful, We can use the

underlying equality from the FQC≃ category to substitute in the following circuit

(as the underlying circuit of the computation):

• •
Not

Not

≡ •
• Not •

Not Not

We can use the underlying equivalences, as the lack of heap and garbage shows

that these are just reversible circuits from FQC≃. The classical nature of all

the morphisms in the circuit mean that we can inherit the equivalences for these

circuits from the simpler category FCC≃, and a quick check of the corresponding

truth tables suffices as the equivalence proof. Namely, both these circuits have

the same truth table as shown below (labelling q0, q1, q2 as the top, middle, and

bottom qubits respectively).

q0in q1in q2in q0out q1out q2out

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 1 1

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 0 0

52

Moving back into the FQC category, we simply keep the set of heaps and

garbages the same as they were. The next step of the proof is to remove the third

controlled Not operation using the second of our laws.

•
� • Not • �

�
Not Not

�

_ _ _ _ _ _ _ _�
�
�
�
�
�

�
�
�
�
�
�

_ _ _ _ _ _ _ _

_ _ _�

�

�

�

�

�

�

�
_ _ _

≡ •
� • Not

�

�
Not

�

The next step of our proof uses the fact that the controlled Not preserves the

zero vector, that is, if we apply the controlled Not to the two-qubit state |00〉, we

are left with the same |00〉 state. This allows us to remove the first controlled Not

by use of our third law.

•
� • Not

�

�
Not

�

_ _ _�

�

�

�

�

�
_ _ _

_ _ _�

�

�

�

�

�

�

�
_ _ _

≡ •
�

Not
�

� �

The last step of the proof is to simply remove the bottom wire, which simply

connects a heap input to a garbage output, by use of our first law.

•
�

Not
�

� �

_ _ _ _�
�
�
�

�
�
�
�

_ _ _ __ _ _ _ _ _�� ��
_ _ _ _ _ _

≡ •
�

Not
�

3.5 Remarks on the three laws

It has been shown in the previous section how our three laws governing equiva-

lences in the FQC category of finite quantum computations can be used to give

a proof of the measurement postulate. However, it has not be shown whether

all equivalent computations in FQC can be shown to be equivalent by means

of the three laws alone. This is indeed still an open question. The work shown

here has been extended on in [YY09] using functoriality of the choice and parallel

composition morphisms to deduce equivalence properties instead of the inductive

53

approach used above. It has also been remarked that the categorical structures

we have defined here can be reformulated in terms of Selinger’s dagger-complete

categories [Sel07], which could lead to a more complete framework of equivalence

relations.

54

Chapter 4

Functional Programming

4.1 An introduction to functional programming

Purely functional programming languages are languages that treat computations

as the evaluation of pure mathematical functions. Functions are said to be pure

if they always return the same result when given the same inputs, and if the

application of the function on any of its inputs will not have caused a side-effect

within any other part of the system. The functional language used in this thesis is

Haskell, and the next few sections shall give a brief overview of the language and

some of its features. One of the nice aspects of using a purely functional language

is how it deals with side-effects. Section 4.3 will go into more details, but suffice

to say here that with the current definition of pure functions, it could be argued

that any program that cannot have any side-effects within the system, equates to

a program that cannot have any input or output as these relate to changes in an

overall system state. Haskell makes use of the categorical notion of monads to

explicitly deal with these side-effects, and to give a more precise definition of what

side-effects are able to occur. Section 4.3 will also introduce the notion of Monads

in Haskell, and section 4.5 will go over the specific example of the IO Monad that

is used to deal with I/O in Haskell programs. Another useful aspect of many

functional languages, including Haskell, is how they make use of lazy evaluation,

55

whereby function evaluation only takes place as and when required. This is useful

in many ways as it allows the use of infinite data structures, whereby only a finite

amount of it is required, and can also save time by not evaluating sub-expressions

if these results are not required to evaluate the overall expression.

It is the way that Haskell utilises monads to explicitly deal with side-effects that

has been the main motivating factor for using it to develop an interface to quantum

computation. We’ll see in Chapter 5 that we are able to define a monad in Haskell

that is used to explicitly deal with the side-effects present in quantum computation.

In other (imperative) languages, where side-effects are implicit at even the lowest

level (e.g. updating stored values), this design would not be possible. Having the

side-effects of measurement explicitly dealt with by a monadic structure also means

we are able to define our unitary transformations separately from this monadic

structure, in essence allowing us to design our reversible computations away from

the complications of measurement.

4.2 Haskell - A purely functional programming

language

Haskell, is a purely functional programming language. It has been around and

developed since 1990, and has a large and growing user base. It relies heavily on

pattern matching and currying, allowing for a more natural, mathematically based,

way of defining functions. There are many compilers and interpreters available for

Haskell, although GHC (The Glasgow Haskell Compiler) is fast becoming the

most commonly used because of it’s large library of extensions. The compilers,

along with the Haskell language definition [Jon03], can be found on the Haskell

homepage: www.haskell.org. The Haskell homepage also contains descriptions

of all the standard libraries, along with tutorials and much more information on

the language itself. There are also a number of introductory textbooks available,

e.g. [Hut07].

56

In this section we shall give a brief introduction to Haskell, starting with an

introductory example that is often given as a first programming exercise in func-

tional programming languages. Namely, defining a function that calculates the

factorial of the given input. Firstly, it is useful (although not always necessary) to

give the type of the function you wish to define. In this case, the factorial func-

tion is a function from an integer to another integer (Int being a 32 bit integer in

Haskell).

factorial :: Int → Int

We can now make use of pattern matching to split the function definition into its

constituent parts, firstly the base case for when the input is zero (the output is

one), and secondly the recursive case for when the input (n) is greater than zero

(the output is n multiplied by the factorial of n-1). In Haskell we can define this

as:

factorial 0 = 1

factorial n = n ∗ factorial (n − 1)

The factorial function is a nice introductory example as it shows off some

important techniques that are extensively used in Haskell. The use of pattern

matching allows function definitions to be split depending on the input. When

evaluating a function that is defined using pattern matching, Haskell will look

sequentially through each definition until the input matches the given pattern,

in the case of the factorial function the second line will be evaluated unless the

input is 0. The other major technique employed by the definition of the factorial

function above is its use of recursion. That is the function is able to call itself.

Mostly, the recursive call will need to be over a smaller input than the original

call, although it is the job of the programmer to ensure this is the case (to prevent

non-terminating programs). In this example it is quite clear that the recursive call

is over a smaller argument, as n − 1 is smaller than n. However, the definition

of smaller isn’t necessarily as clear cut as in this case, and indeed the function

definition as it stands would be non-terminating for a negative input.

57

Another data-type that is extensively used in Haskell is the list datatype. A list

in Haskell is a possibly infinite list of elements with the same type. For example

a list of integers would have the type [Int], and we can now write functions

acting on these lists. For example we could write a function that reverses a list

of integers, starting again by defining the type of the function, and then using

pattern matching over the two list patterns, [] which matches with the empty

list, and (x : xs) which matches with a non-empty list with head element x and a

(possibly empty) tail xs .

reverseList :: [Int]→ [Int]

reverseList [] = []

reverseList (x : xs) = reverseList xs ++ [x]

From this we can see that the reverse of an empty list is an empty list, and the

reverse of a non-empty list is the reverse of the tail of the list concatenated onto

the front of the singleton list containing the head element. If we look more closely

at the definition of the reverseList function above, we’ll also notice that we haven’t

needed to look at the values of the individual elements of the list. Indeed, this is

often the case with list operations, and Haskell provides us with a more generic

way of defining operations on lists so that we don’t have to rewrite the function

for every possible type of list. We can define a more generic list reverse function

whereby the type a is any arbitrary type.

reverseList ′ :: [a]→ [a]

reverseList ′ [] = []

reverseList ′ (x : xs) = reverseList ′ xs ++ [x]

This reverseList ′ function is able to reverse a list containing elements of any type,

and the type checker is able to infer at runtime which specific instance for a is

being used. However, it is important to remember that if we need to look at the

value of any of the elements of this list this generic definition may no longer be

correct. For example, if we were writing a function to sort a list we would need to

know that the elements had some sort of ordering. We shall look at how Haskell

58

uses type-classes to deal with this separate kind of generic programming in section

4.4, but for now we shall look at the specific example of sorting a list of integers.

As lists are used quite extensively in Haskell, we are provided with a form of

list comprehension. This simple sort function for a list of integers can be thought

of as creating a list of elements less than the head of the original list, and a list

of elements greater than the head of the original list, which are both then sorted

themselves before being concatenated back onto either side of the head of the

original list. We make use of the where keyword to give variable names to the

two parts of the list we are sorting (although they are both still immutable data).

sortList :: [Int]→ [Int]

sortList [] = []

sortList (x : xs) = ltx ++ [x] ++ gtx

where ltx = sortList [y | y ← xs , y 6 x]

gtx = sortList [y | y ← xs , y > x]

The code [y | y ← xs , y 6 x] can be read as creating a list of all elements y

such that y comes from the list xs and y is less than or equal to the element x .

Similarly for gtx ([y | y ← xs , y > x]) we have the list of all elements y such that

y comes from the list xs , and y is greater than the element x . The recursive calls

to the sortList function will sort these two sublists before they are recombined

with the original head element x . List comprehension can be a very useful tool

when creating functions over lists in Haskell. The sortList function is in fact an

implementation of the Quicksort algorithm. As previously mentioned we shall

look at how a more generic list sorting algorithm can be defined using type-classes

in section 4.4.

All the functions defined so far have been pretty simple introductory examples

to try and give the reader a taste for how programs are written in Haskell. The next

few sections shall introduce more programming constructs which are used later in

this thesis for the implementation of the Quantum IO Monad, with section 4.6

having some more relevant examples to compare with the quantum computations

59

written using the QIO Monad in chapter 6. One last example I shall give here is to

introduce the idea of an accumulator function. Accumulator functions can often

be used to implement more efficient functions acting on lists, and the simplest

example of an accumulator function is to re-write our list reversing algorithm

using one.

reverseListAccumulator :: [a]→ [a]→ [a]

reverseListAccumulator xs [] = xs

reverseListAccumulator xs (y : ys) = reverseListAccumulator (y : xs) ys

reverseList ′′ :: [a]→ [a]

reverseList ′′ = reverseListAccumulator []

Accumulators are a form of higher order function that use an extra data-structure

to enable the result to be accumulated rather than constructed explicitly. As

we can see, the accumulator function itself takes two lists as arguments, and in

essence shifts the head of one list onto the head of the other list creating a stack

like structure whereby every time the head is popped off the top of one list, it

is then pushed onto the top of the other. It is this process that reverses the list

when the function is called with the empty list as its first argument. The reason

this function is more efficient than the previous implementation of the reverseList ′

function comes from the way that the concatenation operation on lists is defined.

In the accumulator example above, the original input list is only traversed once,

whereas in the original implementation the list is traversed for every call of the

concatenation function (++), which is called on each recursive call of the overall

function.

4.3 Effects in a purely functional setting

As we have mentioned previously, pure functions are defined as functions that

do not produce any side effects. However, in purely functional languages we are

still able to define effectful computations by using datatypes that describe the

60

side-effects that can take place. These datatypes come in the form of Monads

which encapsulate all the effectful parts of the computation so that the overall

program is still pure. In Haskell, monads are used extensively to create any sort

of computations that in themselves would not be pure. Indeed, all I/O in Haskell

takes place in the IO Monad, which we shall introduce in section 4.5. It is easy

to see that I/O actions are impure just by looking at the simple function getChar

which reads a character from the standard input. By definition, a function is only

pure if it always returns the same result given the same starting state, but the

whole point of the getChar function is to return a different character depending

on what the user has entered. This is an event that occurs after the function has

been called, so cannot be encoded into some sort of input state to the function

and hence is also why the getChar function doesn’t have any arguments.

As monads are a notion from category theory, where they are in essence an

instance of a specific monoid, it is worth looking first at the notion of a monoid.

4.3.1 Monoids

Monoids can be defined as a set S along with a binary operation (•) that acts on

members of the given set. The binary operation must be closed over the set, and

there must be a member of the set that is a (left and right) identity element for

the binary operation. The binary operation must also be associative.

Two very simple examples of monoids are of the natural numbers n, along with

addition (+), which has the identity element zero, or the natural numbers along

with multiplication (∗), which has the identity element one.

In functional programming, we can define monoids in a very similar way. A

monoid is a data-type (a), along with a binary operation acting on that data-type

(f ::a → a → a), and an element of the data-type (id ::a) that is the identity of the

given binary operation. In Haskell, the function f is usually called mappend , and

the identity element id is known as mempty . Section 4.4.1 gives more information

on Monoids in Haskell, and goes on to give an example of how we can define a

61

monoid in Haskell for sequencing computations.

4.3.2 Monads

Monads are a notion from category theory ([Mac71]), and are a generalisation of

monoids. Moreover, a monad over a category C, is given by a functor T : C→ C,

along with two natural transformations η : 1C → T , and µ : T 2 → T . There are

two axioms which these natural transformations must adhere to, which correspond

to the generalisation of the associativity law of monoids, and the existence of an

identity element. These two axioms can be given respectively as the following

commutative diagrams.

T 3A

TµA

��

µTA
// T 2A

µa

��

T 2A µA
// TA

TA
ηTA

//

idTA ""FF
FF

FF
FF

F T 2A

µA

��

TA
TηA
oo

idTA||xx
xx

xx
xx

x

TA

The definition of a monad, as given above, can be given equivalently in the form

of a Kleisli triple [Mog88]. These Kleisli triples correspond nicely to how we use

monads in a computational setting, but don’t show as easily the correspondence

to monoids. We shall look now at how we can define monads in terms of a Kleisli

triple, and how this relates to functional programming.

A Kleisli triple over a category C is defined by a triple (T, η, ∗), with T :

Obj(C) → Obj(C), or in terms of functional programming we can think of this

as the monadic type-constructor M , whereby any underlying type a has a corre-

sponding monadic type M a. ηA : A → TA for A ∈ Obj(C), corresponds to an

embedding of a member of an underlying type into the corresponding monadic

type. In Haskell, we denote this function by return :: a → M a, so for example if

we have a value v ::a then we have a corresponding value embedded in the monadic

type, return v :: M a. Finally, ∗ takes a function f : A → MB, and lifts it to

the function f ∗ : MA → MB, or again in functional programming terms, lifts a

function from the type a to a monadic type M b, such that it can be applied to a

62

member of the corresponding monadic type M a. In other words, the application

of the given function can be bound to a result in the monadic type. This binding

leads to this function being called the bind function in Haskell, and is defined by

(>>=) :: M a → (a → M b)→ M b. There are again some laws which define how

these functions must behave (corresponding to the monadic laws given above),

and so as to move away from the categorical notions, we shall give these laws in

terms of their corresponding Haskell notations.

Firstly, we should have that the return function corresponds to a left and right

identity for the monad. The left identity is given by the equivalence return a>>= f

≡ f a. That is, that binding a function (f) to the result of embedding a value

from the underlying type (return a) should be the same as just applying the

unbound function to the value in the underlying type (f a). The right identity,

is given by the equivalence m >>= return ≡ m. That is, that binding the return

function to a member of the monadic type (m :: M a) should just give the same

member of the monadic type (m :: M a). Secondly, the bind operation must be

associative, and this law is given in Haskell code by the equivalence (m>>= f)>>=g

≡ m >>= (λx → f x >>= g). Section 4.4.1 shall go on to look at monads in Haskell

in more detail, and we shall give some simple examples of what can be achieved

using monads. In section 4.5 we shall go on to see how important monads are

in Haskell, and the special syntax that Haskell provides (known as ’do’ notation)

that makes the use of monads in Haskell even easier.

4.4 Type classes in Haskell

Type classes are used in Haskell so that more generic functions can be defined.

As we have seen, functions in Haskell are of a given type, although some poly-

morphism is available, but what if it doesn’t really matter what the type is, so

long as there is a particular function that can work on that type. For example,

we wrote a function that sorts a list of integers, but mentioned that it is actually

63

possible to sort a list that contains any data-type that comes with an explicit

ordering. In general terms, we need to be able to look at two elements of a data-

type and decide whether one is larger, smaller, or the same size as the other.

For integers we are able to use the functions (6) to compare if one integer is

“less than or equal” to another, and the function (>) to compare if it is “greater

than” another. These functions both have the type Int → Int → Bool and it is

the boolean value returned by these functions that is used by Haskell when it is

performing a list comprehension. So if we know that we have equivalent operations

for an arbitrary ordered data-type a, in a → a → Bool , then we know that we

would be able to write a function that sorts a list over type a. Haskell allows us

to do exactly this with its use of type classes. As an example, we could define

a type class that states that for an arbitrary data-type a to be a member of the

type class Ord , it must provide the function (6) ::a → a → Bool and the function

(>) :: a → a → Bool , is derived from this. In Haskell this would be defined by

class Ord a where

(6) :: a → a → Bool

(>) :: a → a → Bool

a > b = ¬ (a <= ∗ b)

and then if we want to write a polymorphic sorting function for lists of any arbi-

trary type a that fulfils the Ord type class, all we have to do is to inform Haskell

to check for this as follows:

sortList ′ :: (Ord a)⇒ [a]→ [a]

sortList ′ [] = []

sortList ′ (x : xs) = ltx ++ [x] ++ gtx

where ltx = sortList ′ [y | y ← xs , y 6 x]

gtx = sortList ′ [y | y ← xs , y > x]

Now, all we have to do is create some instances of the type class to be able to use

it. So, we know that we have the functions available for integers, so lets define

integers as a instance of the Ord type class as follows:

64

instance Ord Int where

(6) = (6)

There can be many data-types that fulfil a type class, for example we could also

define an ordering for lists such that a list with more elements is deemed to be

greater than a list with fewer elements:

instance Ord [a] where

xs 6 ys = length xs 6 length ys

There are many other situations where type-classes come in useful, and Haskell

provides many built in type-classes in its standard library. For instance, the Ord

type-class we have defined above is very similar to a built in type-class (also called

Ord) for data types with an ordering. Other commonly used type classes include,

Eq for data-types which have a defined equality, Num for numeric types, which

define many standard numeric operations (e.g. + - *), and Show which defines

data-types that can be converted to a string so they can be displayed on the

command line or in a Haskell interpreter. In some cases it is possible for Haskell

to derive an instance of a type class for a specific data-type, which is often the

case for the Show type class.

4.4.1 Monoids and Monads in Haskell

Monoids in Haskell are defined by a type class. We have seen that a monoid can

be thought of as a data-type (a ::∗) along with a binary operation (mappend ::a →

a → a), and an element of a that is the (left and right) identity to the mappend

operation (mempty :: a). This can easily be translated into a type-class.

class Monoid a where

mempty :: a

mappend :: a → a → a

Any type that fulfils these two obligations can therefore be defined as a monoid,

although it is useful to note that it is up to the programmer to ensure that the

monoid laws hold.

65

A good example of monoids in Haskell is how they can be used to sequence

computations, threading a sort of state through the computation. This can be

achieved by defining a monoid over functions. We can define a stateful computa-

tion in terms of transition functions from one state to another. In Haskell we can

define this as the data-type:

data State s = State {runState :: s → s }

The destructor function runState is the inverse to the constructor (State), and

is generated automatically satisfying the equation runState (State f) = f . We

can then define the monoidal structure such that these transition functions can

be composed in sequence. As a transition function is just a function in Haskell

we are able to use functional composition (◦) to sequence the different transition

functions. The identity element of this monoid can then simply be given as the

identity function, which just returns its argument as the result.

instance Monoid (State s) where

mempty = State id

(State f) ‘mappend ‘ (State g) = State (g ◦ f)

A stateful computation could now be defined in terms of these transition functions

between states, but the monoidal structure doesn’t allow us to look at the states

during any intermediary stages of the computation. The whole computation must

be evaluated over the input state before an output state is returned. We shall go

on now to look at monads in Haskell, and shall return to this idea of stateful pro-

gramming using monads, which give us a better way of sequencing computations

such that intermediary results can be extracted.

Monads in Haskell are also defined by a type-class. We have seen how monads

are defined by a type-constructor m :: ∗ → ∗, along with poly-morphic functions

return :: a → m a and (the bind function) (>>=) ::m a → (a → m b)→ m b. This

definition can again be easily translated into a type-class.

class Monad m where

return :: a → m a

66

(>>=) :: m a → (a → m b)→ m b

The requirement that these definitions must uphold the monad laws is also left in

the hands of the programmer to check.

Monads in Haskell can be thought of as a type-constructor whose members

describe the monadic behaviour available. The simplest monad to first look at in

Haskell is the Maybe monad. When defining a monad it is often best to look at

the underlying type-constructor for that monad, and understand the behaviour

that the monad is trying to define before looking at the monadic functions. For

the Maybe monad, we start with the following type-constructor.

data Maybe a = Nothing

| Just a

That is, a member of the Maybe type is either Just a value from the underlying

type, or it is Nothing . The Maybe monad is often used when a computation might

not give a sensible result, and in those cases it is the Nothing constructor that is

used to describe a failure of the computation. For example, think of a computation

that divides two integer arguments. What should the result be when the divisor

is given as zero? Without a monadic type, the whole computation may well fail

at this point, but using the monadic bind operation we can describe how these

Nothing results should be threaded through the rest of the computation. We can

define the Maybe monad in just such a way, by giving an instance of the Monad

type-class.

instance Monad Maybe where

return = Just

Nothing >>= f = Nothing

(Just x)>>= f = f x

Now, a Nothing value is threaded through to the end of the computation, but

if a Just value is encountered then it is used in the normal way for the value in

the underlying type. Before looking at a more in-depth example of a monad in

Haskell, I shall finish off my analogy of a division function acting on integers, by

67

defining just such a function.

div :: Int → Int → Maybe Int

‘div ‘ 0 = Nothing

a ‘div ‘ b = Just (a / b)

Our second example shall be an extension of the State monoid that we defined

previously. The state monad still uses transition functions to define the actual

computations, but gives access to intermediary results that allow effectful compu-

tation to occur. This ability for effectful computation comes from the fact that

intermediary result can now effect the computation, or in other words, the values

returned by our computations can depend on previous effectful computations and

not necessarily just on the original input to the computation. A slight remodelling

of our State data-type gives us the first glimpse at how these intermediary results

can be extracted. The following StateM data-type is actually a type-constructor,

allowing a transition function over a type s to return values of type a, as well as

the new state (again in s).

data StateM s a = StateM {runStateM :: s → (a, s)}

The monadic structure can now be defined so that the state is threaded through

a computation. The return function can simply create a transition function that

returns the underlying value, but has no effect on the state, and the bind function

(>>=) returns a transition function that extracts the value and new state from

applying its left hand argument to the given state, using these new values in

applying its right hand argument.

instance Monad (StateM s) where

return a = StateM (λs → (a, s))

(StateM x)>>= f = StateM (λs → let (v , s ′) = x s

in runStateM (f v) s ′)

Stateful computations can be defined using the given StateM monad, but it is

often easier to think of stateful programs in StateM by defining an interface. In

Haskell, we can define what is known as the MonadState class to do this

68

class MonadState m s | m → s where

get :: m s

put :: s → m ()

instance MonadState (State s) s where

get = State (λs → (s , s))

put s = State (λ → ((), s))

The get function is used to return the current state as the returned value, and

leaves the overall state unchanged, and the put function updates the state to the

given value. Since put doesn’t return any information we are using Haskell’s unit

type (). The m → s in the type definition of the class corresponds to a functional

dependency. In Haskell a functional dependency is a hint to the type-checker that

one of the argument types (the s in the example given) can be determined given

the other argument type (the m in the given example).

We have now seen a bit of an introduction to how monads are used in Haskell

to create effectful programs. In fact, Haskell has to make extensive use of mon-

ads when dealing with many aspects of computation that would be standard in

impure languages. The next section shall look specifically at what is known as

the IO Monad in Haskell, which is Haskell’s interface to I/O. The extensive use of

monads in Haskell has also lead to Haskell having some special syntax for monadic

computations known as ’do’ notation, and the next section shall also introduce

this along with some examples from the IO Monad.

4.5 The IO Monad and ’do’ notation

The IO Monad in Haskell is a monad defined in Haskell containing many standard

I/O functions. As we have already seen, monads are used in Haskell to deal with

side-effects, and as such it is only natural for I/O to take place within a monadic

structure. There are many I/O functions defined within the IO Monad so we shall

only take a look at a few here, but much more information is available on-line

69

at the Haskell homepage. As an aside it is interesting to note that writing the

standard “Hello World” program in Haskell requires the use of the IO Monad (see

figure 4.1). The “Hello World” program has the type IO () as it doesn’t return

any result, but has the side effect of putting the string “Hello, World!” to the

standard output. (The function putStrLn :: String → IO () is defined as part of

the IO Monad.)

main :: IO ()
main = putStrLn "Hello, World!"

Figure 4.1: “Hello World” written in Haskell

We have seen previously, that monadic operations in Haskell are defined with

a bind (>>=) function, and the return function. This is also the case for the IO

Monad. If we wish to compose functions from the IO Monad then we need to

make use of the bind operation, and if we wish to return a result within the IO

Monad then we must make use of the return function. For example, if we wanted

to define a function that prompts a user for their name, and then outputs a string

that welcomes the user, we would have to bind together the two occurrences of

putStrLn :: String → IO () and the function (defined as part of the IO Monad)

that reads in a string from the standard input (getLine :: IO String) as follows:

welcome :: IO ()

welcome = putStrLn "Please enter your name:"

>>= λ → getLine

>>= λname → putStrLn ("Hello, " ++ name)

I have laid out the code in quite a readable manner, but as these monadic functions

become longer and longer, it is often easier to think of them in an imperative

manner. E.g. within the monadic computation we can bind results from other

monadic operations to variables, and then use these results in later operations

within the overall monadic computation. Haskell provides us with the ’do’ notation

for this purpose. It is in fact just syntactic sugar, and is converted back into the

monadic binds at compile time, but it enables the user to have a more imperative

70

style when writing monadic programs. It can be used for any monad defined in

Haskell, which is not only useful here for our examples of using the IO Monad,

but also later in this thesis when we define the Quantum IO Monad in Haskell

(See chapter 5). As a first introduction to ’do’ notation we can simply re-write

the previous example (welcome) using it as follows:

welcome ′ :: IO ()

welcome ′ = do putStrLn "Please enter your name:"

name ← getLine

putStrLn ("Hello, " ++ name)

The number of functions available in the IO Monad is quite large, and therefore

it is not realistic to look into all the implementations of the functions. Because

of this, the IO Monad is usually introduced in terms of the I/O functions it

provides, or more abstractly just as an interface to I/O computations in Haskell.

In Chapter 5 I shall also take this approach for introducing the QIO Monad as an

interface to quantum computations in Haskell, although I shall go on to describe

the implementation of the QIO Monad later in Chapter 7. For the rest of this

section, I shall introduce a few more common I/O functions that are provided

in the IO Monad, and give some examples of monadic programs written in ’do’

notation that make use of them.

One such use of the IO Monad, which we shall be using in our implementation

of the QIO Monad, is to enable the use of a random number generator. A random

number generator is obviously an impure function as we wouldn’t want it to return

the same value every time it was called. In Haskell, it is possible to create many

random number generators, but for this example we shall make use of the “global”

random number generator that sits in the IO Monad. There is a type class provided

in the library System.Random called Random, and any instance of this type class

(a) must provide a function randomIO :: IO a, which returns a random element

of the given type, and a function randomRIO :: (a, a) → IO a which returns a

element of the given type that is in the range given by the argument pair. Some

71

common instances of the Random class are booleans, integers, characters, and

floating point numbers. As an example we could write a short dice playing game,

whereby a user enters their name and tries to throw a 6. (Note that we would

have to first import the necessary System.Random library.)

diceGame :: IO ()

diceGame = do putStrLn "Please enter your name: "

name ← getLine

diceGame ′ name

diceGame ′ :: String → IO ()

diceGame ′ name =

do putStrLn "Press any key to roll the dice..."

getChar

x ← randomRIO (1 :: Int , 6)

putStr ("\b" ++ "You threw a " ++ show x ++ "... ")

if x ≡ 6 then do putStrLn "You Win!"

putStrLn ("Thank you, " ++ name)

else do putStrLn "You Lose!"

diceGame ′ name

Calling the diceGame function will prompt the user for their name and pass the

given name to the diceGame ′ function. The diceGame ′ uses the random number

generator to simulate the throwing of a dice by returning a random number (in-

teger) in the range of 1 to 6. The game repeats until the user has thrown a 6, at

which point they have won and the function call can exit. This is a nice example of

writing monadic programs in the IO monad, and also shows how the ’do’ notation

gives our effectful programs are more imperative look.

Another use of the IO Monad (and monads in general) is to enable stateful

programs, for example, programs that require mutable data and/or references to

data stored in memory. In Haskell, we have IORef s to enable the use of mutable

references in the IO Monad. It is also useful at this point to mention that there

72

are other monads which are provided in the standard libraries for similar uses,

such as the State monad which we introduced previously.

4.6 Reversible Computation in Haskell

Haskell doesn’t come with a library for reversible computation, but because of the

pure nature of functions written in Haskell, it lends itself quite nicely to defining

reversible computations. It is the job of the programmer to ensure that the func-

tions we define are reversible, although we could define a universal set of reversible

gates and combinators from which we can define reversible computations. This

approach would be very similar to the classical subset that can be used in defining

computations in the QIO Monad.

A simple example of reversible computation written in Haskell is to implement

a toy language that represents reversible circuits, along with an interpreter for

running the circuits over lists of Boolean values.

The first thing we define for our toy language is the data-type that represents

the possible gates in a circuit.

data Gate = Empty

| X Gate

| Control Gate Gate

| DWire Gate Gate

The names of these constructors represent the operations each gate performs. We

shall look shortly at what these operations actually are. The last Gate argument

to each constructor (except the Empty constructor) gives us a recursive structure

that can be used to build up circuits of gates. As such, it is useful to think of the

Gate data-type in terms of a monoid.

instance Monoid Gate where

mempty = Empty

mappend Empty g ′ = g ′

73

mappend (X g) g ′ = X (mappend g g ′)

mappend (Control c g) g ′ = Control c (mappend g g ′)

mappend (DWire d g) g ′ = DWire d (mappend g g ′)

The monoidal identity (mempty) is simply the Empty constructor, and the se-

quencing of gates (using mappend) can be thought of as pushing the append

operation down through the recursive structure until the end of the circuit is

reached.

The syntax of the language is given by functions that represent the behaviour

of each of the constructors, along with the monoidal constructs to sequence them.

x :: Gate

x = X Empty

X

The x operation is used to logically negate the first bit in the circuit (or sub-

circuit) it represents.

control :: Gate → Gate

control g = Control g Empty

•
Gate

The control operation is used to conditionally apply the gate given as its argument

to the corresponding number of bits below it in the circuit (or sub-circuit) it

represents.

dwire :: Gate → Gate

dwire g = DWire g Empty Gate

Finally, the dwire operation can be thought of as moving the action of its argument

gate down by one wire in the circuit (or sub-circuit) it represents.

As our circuits are designed to be reversible, we can also provide a function

that returns the reverse of a given circuit. This reverse function works at the level

of the Gate data-type, simply reversing the order of any gates and sub-gates.

reverse :: Gate → Gate

reverse Empty = Empty

reverse (X g) = reverse g ‘mappend ‘ x

reverse (Control c g) = reverse g ‘mappend ‘ control (reverse c)

74

reverse (DWire d g) = reverse g ‘mappend ‘ dwire (reverse d)

Now we’ve defined the syntax of our language, we are able to define some

examples of circuits written in it. For example, we can define the Toffoli gate,

toffoli :: Gate

toffoli = control (control x)

or the control ′ gate that only runs its argument when the control wire is in the

False state.

control ′ :: Gate → Gate

control ′ g = x ‘mappend ‘ control g ‘mappend ‘ x

Finally, to show the use of the dwire operation, we can define a circuit that

conditionally applies the x operation to the two wires below the control wire.

controlXX :: Gate

controlXX = control x ‘mappend ‘ control (dwire x)

If we want to be able to run these circuits, then we must define an evaluation

function for our toy language of reversible gates. We can think of a reversible

circuit as a function that takes a list of Boolean values, to a list of Boolean values.

As such, we define the data-type Circuit to represent these functions.

data Circuit = Circuit {c :: [Bool]→ [Bool]}

In order to make the design of the evaluation function easier, it is useful to lift the

underlying monoidal behaviour of our Gate data-type into an equivalent monoidal

behaviour of the Circuit data-type.

instance Monoid Circuit where

mempty = Circuit id

(Circuit f) ‘mappend ‘ (Circuit g) = Circuit (g ◦ f)

The empty circuit is simply the id function, and sequencing of circuits is achieved

by functional composition.

We can now go on to define the actual eval function that formalises the be-

haviour of circuits (or members of the Gate data-type), lifting them to the func-

tional representation of a Circuit .

75

eval :: Gate → Circuit

eval Empty = mempty

eval (X g) = Circuit (λ(x : xs)→ ((¬ x) : xs))

‘mappend ‘ eval g

eval (Control c g) = Circuit (λ(x : xs)→ (x : (if x then (run c xs)

else xs)))

‘mappend ‘ eval g

eval (DWire d g) = Circuit (λ(x : xs)→ (x : (run d xs)))

‘mappend ‘ eval g

It’s quite easy to see how these functions relate to the behaviour we described for

each Gate above. Running a computation can now be thought of as applying an

evaluated circuit, to a list a Booleans.

run :: Gate → [Bool]→ [Bool]

run g bs = c (eval g) bs

With such an evaluator, we could define reversible computations in terms of

our reversible circuits, or give irreversible computations by embedding them into

such a reversible circuit. An example of an irreversible computation embedded in

a reversible circuit would be to define the logical and function (&) by extracting

the third Boolean value from running the Toffoli gate with the two input values,

and a third value set to False.

(&) :: Bool → Bool → Bool

a & b = (run toffoli [a, b,False]) !! 2

Such a toy language shows how the functional style of programming in Haskell

lends itself very nicely to defining reversible computations.

76

Chapter 5

QIO - The Quantum IO Monad

This chapter introduces the Quantum IO Monad (QIO), written in Haskell. Much

of the work in this chapter, and the following two chapters, shall also appear in the

forthcoming book “Semantic Techniques in Quantum Computation” ([AG10]).

5.1 QIO in Haskell

As we have already seen (in section 4.3), Haskell uses the categorical notion of a

monad to enable effectful programs to be designed. Any effects that a program has

are described explicitly by the monad in which they take place, allowing Haskell

programmers to create monads for describing any arbitrary effects they wish to

model. This lends itself very nicely to modelling quantum computations in Haskell,

by using a quantum monad that explicitly defines the side effects that occur in a

quantum computation. Namely, the side effects that can occur from measurements

in a quantum computation (see section 2.3). The Quantum IO Monad (QIO), is a

monad defined in Haskell which acts as an interface to quantum programming. It

is only a first approximation to a functional interface, and we shall discuss some of

its pitfalls at the end of chapter 7. First, this chapter shall introduce the Quantum

IO Monad as a Haskell library, which allows quantum computations to be defined

using Haskell syntax, in a functional manner. Then, chapter 7 will go over the

implementation of the quantum simulator functions that can be used to simulate

77

the actual running of the quantum computations defined in the QIO monad.

This implementation of the Quantum IO monad provides a constructive se-

mantics for quantum programming, in the sense that the functional programs

can also be understood as a mathematical model of quantum computation. The

monadic structure of QIO means that the side-effects from measurements are built

explicitly into the language, and enables us to keep the definition of unitary oper-

ators separate from the monadic structure until we wish to define actual quantum

computations over specific qubits. Once quantum computations are defined, the

quantum simulator functions enable us to simulate the running of the computa-

tion, giving a probabilistic result, or provide a probability distribution over all

the possible results of the computation. The approach taken here, is that when

a sufficiently sized quantum register becomes available (and affordable), it can be

swapped in for these simulator functions, or more specifically the run simulator

function that returns a single probabilistic result.

We shall introduce the Quantum IO Monad in a similar manner as introduc-

tions to the IO Monad, using examples to show the available constructs and how

they are used in defining quantum computations. Section 5.6 will then give a

recap of all the constructs, and a brief discussion on their relation to the cate-

gorical model introduced in chapter 3. In the following chapter, we shall go on

to give fully developed versions of a few of the most famous quantum algorithms

written in QIO, such as Deutsch’s algorithm, Quantum teleportation, and even

an implementation of Shor’s algorithm. The implementation of Shor’s algorithm

also introduces a library of reversible arithmetic operators written in QIO that are

used to define the necessary modular exponentiation function. Shor’s algorithm

also makes use of the quantum Fourier transform, again defined as a quantum

computation in QIO.

78

5.2 The QIO interface

We think of quantum computations as acting in a quantum device attached to our

classical computer. We think of the device abstractly in terms of the commands

it can be instructed to carry out. In this sense, the quantum device must contain

a register of qubits that can be addressed, and set by the device to one of the

computational base states, (i.e. |0〉 = False or |1〉 = True). The device must also

be able to apply unitary operations over one or several of the qubits it contains,

and finally it must have the ability to measure the qubits, and return the outcomes

of measurements as the corresponding boolean value. As we have seen previously,

it is this measurement operation that can lead to side-effects occurring in the rest

of the quantum system in the device, and gives rise to our monadic approach.

The results of the measurements from the quantum device will be probabilistic.

The run function we provide implements a classical simulation of this idealised

quantum device, although we do also provide a quantum simulator function (sim)

that (as it is only simulating the quantum state, and hence has full knowledge of

the state) is able to return a probability distribution over all the possible results.

In this approach, any classical computation which uses results from a quantum

computation is able to occur in our classical system, or in this case standard

Haskell.

Figure 5.1 is an overview of the Quantum IO monad’s API. The type Qbit is

used to represent the qubits in the quantum device, and the type U is the type

of unitary transformations that can be constructed. The type constructor QIO is

the monadic type constructor for the Quantum IO monad, and for any type a, the

type QIO a can be thought of as a quantum computation that returns a member

of the underlying type a. Specifying that the type constructor QIO is a monadic

type simply means that we have the standard monadic functions available for it

(return and >>=). This API also shows how we are able to keep the definition of

our unitary operators in U separate from the monadic structure of QIO , as it is

defined with its own monoidal structure, which corresponds to having an mappend

79

Qbit :: ∗
QIO :: ∗ → ∗
U :: ∗
instance Monad QIO

mkQbit :: Bool → QIO Qbit
applyU :: U → QIO ()
measQbit :: Qbit → QIO Bool

instance Monoid U

swap :: Qbit → Qbit → U
cond :: Qbit → (Bool → U)→ U
rot :: Qbit → ((Bool ,Bool)→ C)→ U
ulet :: Bool → (Qbit → U)→ U

urev :: U → U

Prob :: ∗ → ∗
instance Monad Prob

run :: QIO a → IO a
sim :: QIO a → Prob a
runC :: QIO a → a

Figure 5.1: The QIO API

operation that is the sequential composition of unitaries, with the identity unitary

given by mempty .

As has been previously introduced in section 4.5, the monadic structure of QIO

allows us to use Haskell’s do notation to give our quantum computation a more

imperative feel. In the rest of this section, we shall start to look at the rest of the

constructs introduced in figure 5.1. It is quite clear to see how the constructors

of the monadic QIO type correspond to the behaviour of our generalised quan-

tum device, and to some extent how the underlying members of the U data-type

correspond to some of the morphisms in our category FQC≃ of finite quantum

circuits. We shall introduce them here to give a clearer understanding of how they

are used, and what they can achieve.

Our first example, is just a simple quantum computation that initialises a qubit

into the quantum base state |0〉, and then returns the result of measuring that

qubit.

hqw :: QIO Bool

hqw = do q ← mkQbit False

measQbit q

The computation uses Haskell’s do notation to assign the variable name q to the

initialised qubit, and then bind this assignment into the measurement of the qubit

q . Running the hqw computation would simply return False with probability 1.

80

It is easy to see that this is the case as the qubit is initialised into the state |0〉

that corresponds to the classical state False, and is then simply measured without

any unitary operations having been applied to the qubit.

Computations in QIO become more interesting when we start looking at ap-

plying unitary operations to our qubits. To keep things simple, we shall look at

the Hadamard transform.

1√
2




1 1

1 −1




The Hadamard transform is used quite extensively in quantum computation, so

we provide it as an instance of a rotation in QIO. We shall see a little later how

we have implemented the Hadamard transform, but for now we just need to use

the function uhad :: Qbit → U .

rnd :: QIO Bool

rnd = do q ← mkQbit False

applyU (uhad q)

measQbit q

The expression applyU :: U → QIO () is used to apply the supplied argument

unitary. It is this operation that allows us to embed the reversible (unitary)

operations into the non-reversible quantum computations. The computation can

be read as simply initialising the qubit q into the state |0〉 corresponding to the

classical state False, then applying the Hadamard transform to qubit q , and finally

returning the result of measuring the qubit q . Running this quantum computation

will result in a random Boolean result, with each Boolean (False or True), having

an equal probability of 0.5.

In QIO, we could use our quantum simulator function run :: QIO a → IO a

to simulate the running of the rnd function giving us a probabilistic result. This

is possible because the run function embeds the QIO computation into the IO

monad, which gives us access to Haskell’s random number generator, and hence

this form of probabilistic computation. The other quantum simulator function

81

we provide could also be called, using sim rnd , and would result in a probability

distribution being returned ([(True, 0.5), (False, 0.5)]). The sim function doesn’t

need to embed the result in the IO monad as it doesn’t need access to the prob-

abilistic functions of IO . The result however, still isn’t pure as the computation

also has to simulate the side-effects of the quantum aspects of the computation,

and thus we have defined the Prob monad in which we can embed these probability

distributions. We shall look at the Prob monad in more detail later in Chapter 7.

Although, we have now introduced all three monadic constructs of QIO , we

haven’t actually given any computations that are truly quantum in their nature

(the rnd function is simply a classical probabilistic computation). We move on

now to look more at the unitary transformations we can define, of type U , and

the first truly quantum computation we look at takes advantage of the entangling

properties of the conditional unitary cond to produce a bell state, which as we

have seen is a maximally entangled two-qubit state. The conditional unitary (like

our choice morphism in FQC≃) doesn’t measure the control qubit, and as such,

if the control qubit is in a super-position we can introduce quantum parallelism

into our computations. For example, given q :: Qbit and t , u :: U the expression

cond q (λb → if b then t else u) intuitively runs the unitary t or u depending on

q . However, in any case where the qubit q is in a super-position, both unitaries t

and u will contribute to the result, giving an entangled state, where the result of

t is entangled with the |1〉 part of q , and the result of u is entangled with the |0〉

part of q .

To create a bell state, we can use a one-sided version of the conditional (ifQ),

that is a conditional that applies the empty computation when the control qubit

is in the state |0〉.

testBell :: QIO (Bool ,Bool)

testBell = do qa ← mkQbit False

qb ← mkQbit False

applyU (uhad qa)

82

applyU (ifQ qa (unot qb))

a ← measQbit qa

b ← measQbit qb

return (a, b)

The computation can be thought of as initialising two qubits (qa and qb) into the

base state |0〉, and then applying the Hadamard transform to one of these qubits

(qa) to give us a qubit in the equal super-position state 1√
2
(|0〉+ |1〉). This qubit

is then used as the control qubit in our one-sided conditional (ifQ) to apply the

not rotation (unot) to the second qubit (qb). This can be thought of as taking

the original state 1√
2
(|00〉+ |10〉) to the state 1√

2
(|00〉+ |11〉, as the unitary is only

applied to the part of the state in which the control qubit is in the state |1〉. Our

computation then goes on to measure the two-qubits individually, and return the

pair of the results of the two measurements.

Evaluating sim testBell reveals that the two apparently independent mea-

surements always agree: [((True,True), 0.5), ((False,False), 0.5)]. This is because

when we measure one of the qubits in the entangled state 1√
2
(|00〉+|11〉), the entire

quantum state must be projected into one of the states |00〉 and |11〉, depending

upon the outcome of the measurement, leaving the second qubit in the same state

as the first. The the probability of either measurement is 1

2
= | 1√

2
|2 (This exactly

corresponds to the example we gave in Chapter 2.3.3).

We shall look later at some of the draw-backs of this implementation of condi-

tionals, as the syntax does allow us to define conditionals that don’t actually give

rise to a semantically unitary operation (see section 7.4). This problem arises from

the type-system of Haskell being too weak to define that the state of the control

qubit must be separable from the state of any qubits that are used in the branches.

In this Haskell implementation of QIO , we are able to catch errors of this kind at

run-time, but a more-expressive system could allow these exceptions to be caught

at compile time by the type checker, before any code is actually run on a quantum

system. This, and a few other semantic side-conditions are described in section

83

7.4, and are the main reasons for the re-development of QIO in Agda, which is

presented later in Chapter 9.

Using Haskell as the language in which we embed QIO means that we are able

to use all the functional abstractions that it provides. These functional abstrac-

tions give rise to many ways to organise our programs more succinctly, and means

we are able to reuse functions that have previously been defined. This approach

could be used to provide a library of QIO computations, and unitaries (in U) that

can be imported along with the QIO API, so they can be used in other quantum

programs. As an example, the reversible arithmetic functions we define are in a

separate file, and can be imported when arithmetic functions are needed in other

QIO programs (See the on-line code repository ([Gre09]) for more details).

One example is that of quantum sharing. The idea of quantum sharing is

that instead of being able to copy a quantum state (which is impossible due to

the no-cloning theorem) we are able to share a quantum state amongst groups of

entangled qubits. For example, quantum sharing is used in QML ([AG05]) and

for the linear-algebraic λ-calculus ([AD08]) to model non-linear use of quantum

variables. Also, we have already made use of quantum sharing in our definition of

the testBell example. In the testBell example, we share the state of the qubit qa,

when it is in the state 1√
2
(|0〉+ |1〉), with the qubit qb. We can define the function

share as a quantum computation in QIO , that when given a qubit, returns a new

qubit with which it now shares its state.

share :: Qbit → QIO Qbit

share qa = do qb ← mkQbit False

applyU (ifQ qa (unot qb))

return qb

It is important to realise that the quantum state is not copied (as this would con-

tradict the no-cloning theorem), but merely shared, with the state of the original

qubit exactly defining the entangled state of the pair of qubits. That is, if the

input qubit is in an arbitrary state α |0〉 + β |1〉, then the state after sharing is

84

α |00〉+ β |11〉.

Another example is of creating a qubit already in a super-position, for example

as a way of creating qubits in a different basis to the computational basis. For ex-

ample, one such basis is the |+〉, |−〉 basis, which is simply a Hadamard rotation of

the computational basis. Functions to create qubits in these states can be defined

by: |+〉 :: QIO Qbit

|+〉 = do q ← mkQbit False

applyU (uhad q)

return q

|−〉 :: QIO Qbit

|−〉 = do q ← mkQbit True

applyU (uhad q)

return q

In our testBell example, we measured the bell state to show the correspondence

between the entangled qubits, but if we wanted to use a bell state in a further

computation then we would want a function that just returns the pair of qubits

that are in the entangled bell state. Using the functional abstractions we have

defined above, this could now simply be given by:

bell :: QIO (Qbit ,Qbit)

bell = do qa ← |+〉

qb ← share qa

return (qa, qb)

The function testBell that measures the bell state can now be given by:

testBell = do (qa, qb)← bell

a ← measQbit qa

b ← measQbit qb

return (a, b)

Looking at our computations now, it seems that we could make our programs

more succinct if we were able to define measurement operations for larger quantum

data-structures than just the single qubits. The next section shall look at how we

can achieve this by defining a type-class in Haskell of Quantum data-types. We

shall come back later to look at the other members of the U datatype that haven’t

been introduced yet.

85

5.3 Quantum datatypes for QIO

We mentioned briefly how we can use Haskell’s class system to define quan-

tum data-structures that are larger than just single qubits, and how we can

use this to combine measurements of these quantum data-structures such that

we don’t have to measure each qubit individually. In fact, if we look at the

monadic structures available in QIO , we can see a kind of symmetry between the

mkQbit ::Bool → QIO Qbit and measQbit ::Qbit → QIO Bool functions. They de-

fine a kind of relationship between values of type Bool (or bits), and their quantum

counter-part Qbit (or qubits). This is a relationship that can be extended to other

data-structures that can provide a quantum counter-part, such that a member of

the quantum type can be initialised from the classical type, and the measurement

of the quantum structure gives rise to a member of the classical type. A simple

example would just be the correspondence between a pair of Boolean values, and

a pair of qubits. More precisely, if we had functions mk2Qbits :: (Bool ,Bool) →

QIO (Qbit ,Qbit) and meas2Qbits :: (Qbit ,Qbit) → QIO (Bool ,Bool), then they

exactly define the correspondence. In fact, if we had these functions we could

already have made use of them in the testBell example in the previous section. In

more general terms, if we can define similar functions for any corresponding clas-

sical and quantum data-types then we could use them in our QIO computations.

This requirement is analogous to the example in section 4.4 (that any type with

an ordering can be sorted), and it is easy to see that in this case we can also use

a type-class to define such a requirement.

As such, we can introduce the type-class Qdata, which defines that for any

types to fulfil the class requirements, they must provide the functions that define

the correspondence. That is, for a classical type a and a corresponding quantum

type qa, we must be able to define the functions mkQ ::a → QIO qa and measQ ::

qa → QIO a. That is, that the Qdata type-class is given by

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

86

measQ :: qa → QIO a

In fact, we can start to look at other operations we have that act on qubits, and

see if they can be generalised over larger quantum data-structures. For example,

we can also generalise the conditional operation to have a larger quantum data

structure as its control, such as defining the function cond2Qbits : (Qbit ,Qbit)→

((Bool ,Bool) → U) → U , that gives a conditional acting over two qubits. We’ll

see later how the ulet constructor can also be generalised in this way, but shall

explain more about that when we’ve actually introduced the behaviour of ulet .

For now, we shall just extend our definition of the Qdata type-class to also include

the generalised version of the conditional unitary.

class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

condQ :: qa → (a → U)→ U

The simplest instance of the Qdata type-class is with the correspondence be-

tween Booleans and qubits which we have already been using. The type-class

functions are just given by the underlying QIO constructors.

instance Qdata Bool Qbit where

mkQ = mkQbit

measQ = measQbit

condQ q br = cond q br

The correspondence we gave as an example between pairs of boolean values,

and pairs of qubits could also be given as an instance of the type-class. We

can however give this in more general terms, that given any two instances of

Qdata, with a and b being the underlying classical types, and qa and qb being

the corresponding underlying quantum datatypes, we have an instance of Qdata

between the pairs (a, b) and (qa, qb). That is, that Qdata is closed under pairing,

with the necessary functions defined in terms of the underlying functions of each

member of the pair.

87

instance (Qdata a qa,Qdata b qb)⇒ Qdata (a, b) (qa, qb) where

mkQ (a, b) = do qa ← mkQ a

qb ← mkQ b

return (qa, qb)

measQ (qa, qb) = do a ← measQ qa

b ← measQ qb

return (a, b)

condQ (qa, qb) br = condQ qa (λx → condQ qb (λy → br (x , y)))

Other instances of this class include the closure of Qdata over lists

instance Qdata a qa ⇒ Qdata [a] [qa] where

mkQ n = sequence (map mkQ n)

measQ qs = sequence (map measQ qs)

letU as xsu = letU ′ as []

where letU ′ [] xs = xsu xs

letU ′ (a : as) xs =

letU a (λx → letU ′ as (xs ++ [x]))

condQ qs qsu = condQ ′ qs []

where condQ ′ [] xs = qsu xs

condQ ′ (a : as) xs =

condQ a (λx → condQ ′ as (xs ++ [x]))

and in section 6.3 we’ll also present a quantum integer datatype (QInt), that is a

member of Qdata along with Int as its corresponding classical datatype.

Before looking back at the QIO constructors we haven’t yet introduced, we’ll

use our generic operation measQ to redefine the testBell function once more.

testBell :: QIO (Bool ,Bool)

testBell = do qab ← bell

measQ qab

88

5.4 More on the QIO interface

Looking back at the QIO API in figure 5.1, we’ll see that there are still some

constructs that we haven’t explained yet. We have explained some of the members

of the U data-type, which is the type of unitary transformations in QIO . This type

is defined as a monoid, and as such comes with the binary operator, mappend in

Haskell, that corresponds to sequential composition. The identity of this monoidal

structure, mempty , is just the empty computation.

It is useful to point out here, that although we have chosen our unitary con-

structs to follow on from the constructs we looked at in defining the category

FxC≃ of circuits, the monoidal structure here doesn’t correspond to the monoidal

structure present in FxC≃ that denotes parallel composition of circuits. In QIO ,

we can think of the corresponding parallel composition of circuits as the sequential

composition of unitaries acting on different qubits in the system. The syntax itself

doesn’t define any form of parallelising unitaries that act on different qubits, and

neither does the semantics of our simulator functions. However, it would be pos-

sible if the “plug-in” quantum hardware supports the parallel running of unitaries

over different qubits, that a compiler could figure out optimisations where this

could occur.

We can now give our definition of the one-sided conditional ifQ that has been

used previously in our examples. It is simply defined using a conditional unitary

that applies the mempty computation for the false part of the computation

ifQ :: Qbit → U → U

ifQ q u = cond q (λx → if x then u else mempty)

To increase readability, and simplify the presentation, the rest of this thesis shall

be written using mappend as � and mempty as •.

Rotations in QIO are another primitive operation in U , they are defined in

a very similar manner to our one “bit” operations in FQC≃, by any unitary

2× 2 complex valued matrix. These matrices are given a functional definition by

representing them as functions in (Bool ,Bool)→ C. The matrix that corresponds

89

to an arbitrary rotation f :: (Bool ,Bool)→ C can be thought of as;



f(False, False) f(False, True)

f(True, False) f(True, True)




the rot construct of U , lifts these rotations to be unitary operators in U by

defining which qubit they are to be applied to. We can can define the unot and

uhad operations we have used previously, along with the uphase operation that

when given a real argument (r :: R), corresponds to the phase rotation with phase

θ = r.

unot :: Qbit → U

unot x = rot x (λ(x , y)→ if x ≡ y then 0 else 1)

uhad :: Qbit → U

uhad x = rot x (λ(x , y)→ if x ∧ y then− h else h)

where h = (1 / sqrt 2)

uphase :: Qbit → R→ U

uphase x r = rot x (rphase r)

rphase :: R→ Rotation

rphase (False,False) = 1

rphase r (True,True) = exp (0 : + r)

rphase (,) = 0

For example, the Pauli-Z gate is an instance of a phase gate, with the argument

π. Or in other words, we could define the rotation upauli z by

upauli z :: Qbit → U

upauli z x = uphase x pi

Another primitive operation that is provided in U is the swap construct. The

operation swap x y can be thought of as swapping the position of the two qubits x

and y within the quantum register. The swap operation could actually be defined

in terms of three controlled not operations, which it is already possible to define

90

as a QIO computation. The circuit

|ψ〉 • X • |φ〉

|φ〉 X • X |ψ〉

would just be implemented as

swap :: Qbit → Qbit → U

swap qa qb = ifQ qa (unot qb)

� ifQ qb (unot qa)

� ifQ qa (unot qb)

However, we include swap as a primitive construct in U for reasons of efficiency.

The two constructs we have left to look at are the urev function and the

ulet primitive. The ulet primitive is used to introduce ancillary qubits into our

computation, and as such has quite a complicated behaviour. We shall go on to

look at the behaviour of the ulet operation in the next section, but for now we

shall finish off this section by introducing the urev function.

The urev function comes about because of the unitary nature of our U data-

type. That is, that every definable member of the U datatype should correspond

to a unitary operator that can be applied to a quantum system. By definition, a

unitary operator has an inverse that is also a unitary operator. The urev function

simply takes a member of the U data-type and returns the member of the U

data-type that corresponds to the inverse of the original. In fact, this is simply

achieved at a syntactic level. The fact that urev can work at the syntactic level

should arise from the fact that members of our U data-type only define unitary

operations. This is the case in QIO , up to the problems we talk about in section

7.4. However, all these problems are caught with errors at run-time, and their

inverses are treated in exactly the same way. We shall have a brief look later (in

Chapter 7) at how the urev function is implemented.

91

5.5 Ancillary qubits, and the use of ulet in QIO

So far, the use of quantum structures in our computations has to be dealt with

explicitly by the programmer. Any use of qubits has to be preceded by an initial-

isation of the qubit, and any initialised qubits must be kept track of throughout

the whole computation. This doesn’t necessarily lead to a natural way of pro-

gramming, especially when we look at how a lot of quantum algorithms make use

of ancillary qubits, or ancillary registers of qubits. The structure of many of the

algorithms, arising from the reversible nature of the unitary transforms, means

that once the result is calculated many of the intermediary computations are run

in reverse, and these ancillary qubits are returned to their original state. In fact,

it is this behaviour that lead us to the modelling of heap and garbage in the FxC

category of finite computations. In the specific cases where any auxiliary qubits

are completely reset to their original values, these auxiliary qubits have no effect

on the unitarity of the computation. In essence, the programmer should only have

to deal with initialisations and measurements of the information bearing qubits

of a computation, and if certain auxiliary qubits are required, and guaranteed to

not effect the unitarity of the computation, then they can be dealt with implicitly

by the system. This behaviour is introduced to QIO in the form of the quantum

(unitary) let function ulet . A programmer can introduce temporary qubits into a

computation, as long as they can guarantee that the qubit is back in its original

state by the end of that part of the computation. Although this may sound like

a hard task on the part of the programmer, as qubits can become entangled etc.,

we are able to use this ulet structure in many of our implementations of quantum

algorithms. In fact, the ulet construct is used extensively in the definition of the

quantum arithmetic functions, which we look at in section 6.3. We shall now

move on to look at the ulet construct in more detail, and show how this form of

quantum let can also be extended over our quantum datatypes, and hence added

to the Qdata type-class.

The QIO API enables us to use ancillary qubits with the use of the function

92

ulet :: Bool → (Qbit → U) → U . The expression ulet b f can be thought of as

introducing an ancillary qubit initialised in the base state relating to b, and passes

this new qubit q as the argument to the function f , giving us the sub-computation

(or more specifically, unitary operation) in which the ancillary qubit is used (f q).

Once this sub-computation is finished, the qubit q is simply removed from the

overall state of the system, and left back in an uninitialised state with all the

other un-used qubits. The requirement that after running f q , the qubit q must

be back in the base state b has to be fulfilled by the programmer. This is another

semantic side-condition that is caught at runtime by our current system, and is

again another reason for the redevelopment of QIO in a stronger type system (See

chapter 9).

The ulet constructor is another function that relates Boolean values with their

quantum counter-part; qubits. As such, we are able to generalise the ulet structure

over larger quantum data-structures, in a very similar manner as we have for the

other members of the Qdata type-class. In fact, we are able to extend the Qdata

type-class to impose this generalisation.

class Qdata a qa | a → qa, qa → a where

...

letU :: a → (qa → U)→ U

The letU function is now the generalisation of the ulet construct over any quantum

data-types that fulfil the Qdata type-class along with their classical counter-parts.

As we have extended the Qdata type-class, we must also extend the instances of

the type-class to include the corresponding letU function. For example, we can

easily extend the correspondence between Booleans and qubits with

instance Qdata Bool Qbit where

...

letU b xu = ulet b xu

and similarly for the other instances we have defined, E.g pairs of Qdata.

instance (Qdata a qa,Qdata b qb)⇒ Qdata (a, b) (qa, qb) where

93

...

letU (a, b) xyu = letU a (λx → letU b (λy → xyu (x , y)))

We have now introduced all the constructs available in the QIO API, and

given some simple examples of how they are used. The next chapter look at the

implementations of some of the algorithms we have seen in section 2.6, written in

QIO . The final section of this chapter will give a bried recap of the constructs

available in QIO , and a discussion on their relation to the categorical model of

circuits introduced in chapter 3

5.6 QIO Design

Having introduced all the constructs of QIO in an example driven manner, it is

useful to have a brief recap of all the contructors available. This section aims

to list all the QIO contructors, along with a brief description, and their relation

to the categorical model of circuits introduced in chapter 3. In fact, it is mainly

the choice of unitary operators that is influenced by the categorical model, as the

circuits we introduced didn’t model the initialisation, or explicit measurement of

qubits. As such we shall first recap the contructs of the monadic QIO type, and

then move onto the constructs of the pure monoidal U type of unitary operations.

• Qbit :: ∗

The type Qbit is a reference to a physical qubit within the system.

• QIO :: ∗ → ∗

instance Monad QIO

QIO is a monadic type constructor, that contains the following primitive

operations for defining quantum computations.

• mkQbit :: Bool → QIO Qbit

The mkQbit construct is used to initialise a qubit into the base state given

by the argument Bool value.

94

• applyU :: U → QIO ()

The applyU construct is used to apply a unitary operation (of type U which

is introduced below) to the current quantum state of a system.

• measQbit :: Qbit → QIO Bool

The measQbit construct is used to measure qubits, and return a Boolean

result depending on the measurement outcome. It is this measurement con-

struct that can be effectful, causing side effects to the quantum state of the

rest of the system, and gives rise to the monadic structure of QIO .

• U :: ∗

instance Monoid U

The U data type defines the unitary operations that can be defined for use

in QIO computations. Its monoidal structure gives rise to an � operation

that sequences operations, and a • element that corresponds to the idenity

operator. The following primitives can be used to define unitary operations

(of type U).

• swap :: Qbit → Qbit → U

The swap operation is used to swap the states of two physical qubits within

the overall quantum state. This corresponds exactly to one of the wires

constructs as introduced in the categorical model, and any other wires con-

struct can be defined in terms of multiple swap operations. A brief discussion

on the inclusion of the swap operation is included at the end of this section.

• cond :: Qbit → (Bool → U)→ U

The cond operation allows conditional operations to be defined, whereby

the unitary that is applied depends on the value of a control qubit. The

cond operation corresponds to the controlled operations introduced in the

categorical model, whereby the special cases in which one of the branches is

• correspond exactly to the two control structures in the categorical model.

95

• rot :: Qbit → ((Bool ,Bool)→ C)→ U

The rot operation applies a single qubit rotation to the given argument qubit.

Instances of the rot operation correspond exactly to the one qubit rotations

introduced in the categorical model. The second argument (Bool ,Bool)→ C

defines exactly the unitary matrix that represents the rotation, with in-

stances of rot including the Hadamard rotation, Not rotation (pauli X), and

a Phase rotation. Although any single qubit rotation can be defined. The

classical subset of QIO is only restricted by the instances of rot which can

be used (E.g. only Not and Id rotations are classical).

• ulet :: Bool → (Qbit → U)→ U

ulet allows the introduction of ancilliary quibts into a QIO computation.

The programmer must ensure unitarity by only using the ancilliary qubit in

such a way as to return it to its original value.

• urev :: U → U

As all members of the U data type are unitary, the urev function is able

to calculate the inverse (or reverse) of the given argument unitary. This is

achieved at the syntactic level.

• Prob :: ∗ → ∗

instance Monad Prob

The Prob type contrsuctor is defined to model the probablistic nature of

running quantum computations. As such it has a monadic structure, that is

used to create probability distributions instead of a pure return value.

• run :: QIO a → IO a

The run function embeds QIO programs into the IO monad, using the

random number generator to simulate the running of a QIO computation.

• sim :: QIO a → Prob a

96

The sim function embeds QIO programs into the Prob monad, creating a

probability distribution for the results of running a QIO computation.

• runC :: QIO a → a

The runC function is able to run QIO programs that only use the classical

subset of QIO , and can return a pure value as the classical subset doesn’t

give rise to an effectful model of computation.

• class Qdata a qa | a → qa, qa → a where

mkQ :: a → QIO qa

measQ :: qa → QIO a

condQ :: qa → (a → U)→ U

letU :: a → (qa → U)→ U

The type class Qdata introduces a way of extending the quantum data types

for which a QIO computation can have access. mkQ initialises a quantum

data structure, from its classical counterpart, and measQ measures a quan-

tum data structure, collapsing it to a single element of the classical coun-

terpart. condQ allows a quantum data structure to be used as the control

in a conditional unitary, and letU allows the quantum data structure to be

introduced as an ancilliary structure in a unitary.

• instance Qdata BoolQbit . . .

instance (Qdata a qa,Qdata b qb)⇒ Qdata (a, b) (qa, qb) ...

instance Qdata a qa ⇒ Qdata [a] [qa] ...

Example instances of the Qdata class include the correspondence between

Booleans and qubits, and any quantum data structures can be extended over

pairs and lists.

The Qdata class allows us to overload the operations for each member of the

class. As Bool and Qbit combine to form a member of this class, this leaves

the underlying mkQbit , measQbit , cond , and ulet constructors looking somewhat

97

redundant. However, it is quite important to introduce these constructs to show

that at the lowest level, any member of the Qdata class must be defined in terms

of the individual qubits that make up the quantum data structure.

It has also been noted that the swap operation on qubits looks a little redunant,

as unitaries can explicitly reference the qubits on which they act. However, it is

left as a construct in QIO as it can be useful for moving qubits about within

a larger quantum data structure, without having to then explicitly reference the

individual qubits within the data structure when you want to pass the whole thing

as an argument.

The following chapter looks at some of the most famous quantum algorithms,

as introduced in section 2.6, developed in QIO .

98

Chapter 6

Quantum algorithms in QIO

This section goes over the implementation of a few of the famous quantum algo-

rithms we have seen previously in section 2.6. The algorithms we present imple-

mented in QIO include Deutsch’s algorithm, Quantum teleportation, Quantum

(or reversible) arithmetic functions, and the Quantum Fourier Transform (QFT).

The final section goes on to look at the development in QIO of an implementation

of Shor’s algorithm, which makes use of some of the previously defined algorithms.

6.1 Deutsch’s algorithm

Deutsch’s Algorithm ([Deu85]), as we have seen in section 2.6.1, was presented as

one of the first and simplest quantum algorithms that could be shown to provide

a more efficient solution than its classical counterpart. In Haskell, we can think

of the problem as being given a function f :: Bool → Bool , and being asked to

calculate whether the given function is balanced or constant.

In the QIO monad the algorithm can easily be modelled: we initialise two

qubits in the |+〉 and |−〉 states, and then conditionally negate the second qubit

depending on the outcome of applying f to the first qubit. The resulting entan-

glement describes the properties of f which we wish to find out. Applying the

Hadamard rotation to the first qubit, and then measuring it, enables us to extract

this information.

99

deutsch :: (Bool → Bool)→ QIO Bool

deutsch f = do x ← |+〉

y ← |−〉

applyU (cond x (λb → if f b then unot y else •))

applyU (uhad x)

measQ x

We can see from the code that the function f only appears to be called once, in

the argument to a conditional unitary, and this is indeed the case. The quantum

control aspects of the cond construct allow us to have effectively run the function

f over a quantum state. In either of the cases where f was a constant function

then the measurement will yield False (with probability 1), and in the cases where

f is a balanced function the measurement will yield True (again with probability

1).

Evaluating, sim (deutsch ¬) gives [(True, 1.0)], sim (deutsch id) also gives

[(True, 1.0)]. sim (deutsch (λx → False)) gives [(False, 1.0)], and sim (deutsch (λx →

True)) also gives [(False, 1.0)].

6.2 Quantum Teleportation

Quantum teleportation has been introduced in section 2.6.7, and can be thought

of as the transfer of an arbitrary quantum state (in this case a single qubit) using

a pair of entangled quantum states (or qubits) and the communication of two

classical bits. With-in the QIO monad, we can think of this in three stages. First,

before any communication has occurred we must initialise the entangled pair of

qubits. Secondly, Alice uses one of these qubits to entangle it with the qubit she

wishes to teleport, and produces the classical data from measuring the two qubits

now in her possession. The third stage involves Bob receiving the classical mea-

surements, and performing the necessary unitary on his qubit from the entangled

pair. To model the requirement that Alice and Bob share an entangled pair of

100

qubits means that the whole process must take part in a single quantum system.

In terms of the QIO monad, this means that the whole process must take part

with-in a single instance of the QIO monadic structure.

Alice has her initial qubit (aq) and one of the entangled pair of qubits (eq).

All she has to do is apply a controlled not between these two qubits, and then

perform the Hadamard rotation on the first one. The application of the controlled

not rotation is very similar to the share operation previously defined, however, we

cannot simply use the share function as we require that the state of the input qubit

qa is somehow shared with the already entangled state of the eq qubit. Finally

she has to measure these two qubits and send the results of this measurement to

Bob. The results of the measurement of these two qubits corresponds exactly to

the requirement that two classical bits of data must be sent to Bob, and without

this classical information Bob is unable to determine anything about the state of

the qubit he has. We implement Alice’s part of the teleportation protocol by the

function alice.

alice :: Qbit → Qbit → QIO (Bool ,Bool)

alice aq eq = do applyU (ifQ aq (unot eq))

applyU (uhad aq)

measQ (aq , eq)

Bob will also have a qubit from the entangled pair (eq). He will receive the

classical data (cd) from Alice, and depending upon this data, has to apply the

correct unitary (or unitaries) to his entangled qubit eq . We model Bob’s part of

the teleportation protocol by the function bob.

uZ :: Qbit → U

uZ qb = (uphase qb 0.5)

bob :: Qbit → (Bool ,Bool)→ QIO Qbit

bob eq (a, b) = do applyU (if b then (unot eq) else •)

applyU (if a then (uZ eq) else •)

return eq

101

In order to actually run the teleportation protocol, we have the requirement

that Alice and Bob share an entangled pair of qubits. This entangled pair corre-

sponds exactly to the Bell state we defined in QIO previously (bell ::QIO (Qbit ,Qbit)).

We can now combine the three stages of the teleportation protocol as follows:

teleportation :: Qbit → QIO Qbit

teleportation iq = do (eq1 , eq2)← bell

cd ← alice iq eq1

tq ← bob eq2 cd

return tq

The teleportation function takes a qubit as an argument, which is the qubit whose

state we wish to teleport. The protocol first initialises the entangled pair, and

then Alice uses one of the pair along with the input qubit to create the classical

data cd . Bob can then use this classical data, along with the other qubit from the

entangled pair to reconstruct the state of the original input qubit.

6.3 Reversible arithmetic

We first looked at reversible arithmetic because an implementation of Shor’s algo-

rithm requires a quantum circuit that calculates the necessary modular exponenti-

ation function over a quantum register. There are quite a few proposals for circuits

that perform arithmetic in such a manner [BCDP96, CDKM04, Dra00, Gos98],

with most using clever tricks to reduce the overall number of qubits required for

the circuit. This section aims to introduce our library of reversible arithmetic func-

tions, written in QIO that follow the work in [VBE95] to build up to a modular

exponentiation circuit, from smaller reversible circuits that implement addition,

modular addition, modular multiplication, and finally the required modular ex-

ponentiation. These circuits only use elements from the classical subset of our

unitary operators, so the classical simulator function runC can be used in testing

the circuits over classical inputs. Although the resultant circuits seem to be of a

102

classical nature, it is the way in which we can use them over quantum input states

that means they can be used in our implementation of Shor’s algorithm later in

this chapter (see section 6.5).

As classically it is easier to think of arithmetic circuits acting on decimal integer

values, and not on their underlying binary representation, we can first define a

type of quantum integer that is essentially a wrapper for a list of qubits, along

with Haskell’s Int data-type as its classical counter-part.

data QInt = QInt [Qbit] deriving Show

Functions that convert between classical integers, and lists of Booleans of fixed

length, given by qIntSize ::Int , are used as an intermediary step in our definition of

the QInt ,Int instance of the Qdata class. These functions (int2bits and bits2int)

are coded in the normal way, to essentially give a binary representation of the cor-

responding integers. We define the instance of Qdata by lifting the corresponding

list operations over the QInt datatype.

instance Qdata Int QInt where

mkQ n = do qn ← mkQ (int2bits n)

return (QInt qn)

measQ (QInt qbs) = do bs ← measQ qbs

return (bits2int bs)

letU n xu = letU (int2bits n) (λbs → xu (QInt bs))

condQ (QInt qi) qiu = condQ qi (λx → qiu (bits2int x))

The approach for constructing a reversible addition function is now achieved

by defining a function that calculates the sum of three qubits, and a function that

calculates the corresponding carry qubit. These can be used to work recursively

through the list of qubits to keep track of the overall sum and any overflow that

might occur.

sumq :: Qbit → Qbit → Qbit → U

sumq qc qa qb =

cond qc (λc →

103

c0 = 0

ĉa
r
r
y

ĉa
r
r
y

dsu
m

c0 = 0

a0

b0

c1 = 0

ĉa
r
r
y

ĉa
r
r
y

dsu
m

c1 = 0

a1

b1

c2 = 0

ĉa
r
r
y

ĉa
r
r
y

dsu
m

c2 = 0

a2

b2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

cn−1 = 0

ĉa
r
r
y

ĉa
r
r
y

dsu
m

cn−1 = 0

an−1

bn−1

cn = 0

ĉa
r
r
y

dsu
m

cn−2 = 0

an

bn

overflow = 0

Figure 6.1: A reversible circuit for addition (taken from [VBE95]). The reversible
ĉarry and ŝum functions are evaluated in the direction of the ̂ symbol, such
that all the ĉarry operations are undone after the final overflow value has been
calculated, and the carry-bits have been used in their part of the overall sum.

cond qa (λa → if a 6≡ c then unot qb else •))

carry :: Qbit → Qbit → Qbit → Qbit → U

carry qci qa qb qcsi =

cond qci (λci →

cond qa (λa →

cond qb (λb →

if ci ∧ a ∨ ci ∧ b ∨ a ∧ b then unot qcsi else •)))

We note that carry needs access to the current and the next carry-qubit, while

sumq only depends on the current qubits.

The reversible addition circuit can now be defined in terms of these circuits,

whereby the carry operations are performed in reverse after the overall overflow

bit has been calculated. This corresponds to the circuit diagram for addition given

in [VBE95] which is reproduced here in figure 6.1.

qadd :: QInt → QInt → QInt → Qbit → U

qadd (QInt qas) (QInt qbs) (QInt qcs) qc = qadd ′ qas qbs qcs qc

where qadd ′ [] [] [] qc

104

= •

qadd ′ [qa] [qb] [qci] qc

= carry qci qa qb qc �

sumq qci qa qb

qadd ′ (qa : qas) (qb : qbs) (qci : qcsi : qcs) qc

= carry qci qa qb qcsi �

qadd ′ qas qbs (qcsi : qcs) qc �

urev (carry qci qa qb qcsi) �

sumq qci qa qb

This implementation of reversible addition uses three registers of qubits, and

an extra qubit that will encode whether there has been any overflow. The first

two are simply the registers containing the inputs that are to be added (the re-

sultant sum overwrites the second of these two registers). The third register is an

additional register that must be initialised to the state |~0〉, which corresponds to

a QInt representation of the integer zero. This third register is used within the

computation to hold each of the intermediary carry-bits, with the final carry com-

putation having the overflow qubit as its output. The qubits in this third register

are then reset back to the zero values by the inverse of the carry computation

being performed back down through the registers. This behaviour can be seen in

the QIO implementation by noticing that in the general recursive case, a urev of

the carry function is called corresponding exactly to the call to the carry function

above it.

This behaviour is also exactly the behaviour we have designed the ulet con-

structor to model, and instead of the user having to keep track of this auxiliary

register of qubits, we are able to use our letU constructor so that the system deals

with these auxiliary qubits implicitly, presenting the circuit as a unitary structure

to the user that just requires the two input registers, and an extra qubit that con-

tains any overflow information. Without the use of letU to present the algorithm

as a unitary structure in this way, the circuit could not be used to define our other

105

unitary arithmetic circuits in a modular fashion, as the user would have to keep

track of auxillary qubits used in each and every call to the addition function qadd

explicitly.

We have given the implementation above to show how our qadd function relates

to the circuit in figure 6.1, but now give the re-implementation using the letU

structure to introduce each of the carry qubits into the computation as and when

required. If the algorithm didn’t ensure these qubits were restored to their original

state, then a run-time error would be thrown as we described when introducing

the ulet construct (in section 5.5).

qadd :: QInt → QInt → Qbit → U

qadd (QInt qas) (QInt qbs) qc′ =

letU False (qadd ′ qas qbs)

where qadd ′ [] [] qc = ifQ qc (unot qc ′)

qadd ′ (qa : qas) (qb : qbs) qc =

ulet False (λqc ′ → carry qc qa qb qc′
�

qadd ′ qas qbs qc′
�

urev (carry qc qa qb qc′)) �

sumq qc qa qb

We can see straight away from the type of this new qadd function that it only

requires the two registers of qubits that represent the two inputs to be summed,

along with the qubit that will encode any overflow of the operation.

As an aside, it is nice to note that we can write a simple add function for

integers using this reversible circuit. The computation is written in QIO , but as

we can use the pure runC classical simulator function, we have a pure addition

function that has been defined in a reversible manner.

add ′ :: Int → Int → QIO Int

add ′ a b = do (qa, qb)← mkQ (a, b)

overflow ← mkQ False

applyU (qadd qa qb overflow)

106

measQ qb

(+) :: Int → Int → Int

a + b = runC (add ′ a b)

This addition function could now be used to test the implementation of the addi-

tion circuit, but we must take note that it doesn’t deal with overflow if any has

occurred. This addition function does indeed behave as would be expected (E.g.

calling 8 + 5 gives 13).

The library of arithmetic functions is now built using this reversible adder uni-

tary (qadd) as the basis of larger unitaries that define the more complex functions.

We follow the definitions given in [VBE95] to create the functions as given below.

The full functions can be found as part of the reversible arithmetic library included

in the on-line source code [Gre09], but we simply give the types here with a brief

outline of how each function is defined in terms of the functions that preceded

it. Each successive arithmetic function is a step towards the goal of creating a

reversible circuit that computes modular exponentiation.

The first step is in defining a circuit that implements modular addition using

the qadd circuit above. These modular addition circuits can be thought of as being

indexed by the classical value N , which is the modulus of the function, and given

as the first argument to the function that defines the unitary.

adderMod :: Int → QInt → QInt → U

The next step is to use the modular addition unitary to define a modular

multiplication unitary. The first classical argument is again the modulus of the

function (N). The other classical input is one of the operands of the overall

(modular) multiplication, and can be given classically as its constituent bits are

used in classical if statements to control the addition (modulo N) of (quantum

representations of) increasing powers of two to the second qubit register.

multMod :: Int → Int → QInt → QInt → U

This modular multiplication function has the requirement that the second qubit

register is initialised to the state |~0〉. This cannot be achieved implicitly by a

107

letU construct as the register isn’t restored to this original value, and indeed it is

actually this second register that encodes the result of the multiplication (modulo

N) after the calculation has occurred.

To go on to construct the actual modular exponentiation function, we require

that the modular exponentiation function can be controlled conditionally, depend-

ing on the state of a control qubit. We can achieve this very simply in QIO by

using the ifQ unitary operation we defined previously.

condMultMod :: Qbit → Int → Int → QInt → QInt → U

condMultMod q n a x y = ifQ q (multMod n a x y)

We can then go on to define a modular exponentiation unitary in terms of this

(quantum) controlled modular multiplication unitary. The exponential unitary is

again indexed by the modulus N as its first input. The second input is the base

of the exponential, and can be given classically, as it is used as the basis for an

iterated squaring method that is passed as the classical input to the multiplication

(modulo N) unitary from above.

modExp :: Int → Int → QInt → QInt → U

The first quantum register must encode the exponent of the computation, and

the second quantum register must be initialised to |~1〉, or in other words as a

QInt representation of the integer one. It is this second register that will contain

the result of the exponential after the calculation has occurred. The definition of

this modExp function also makes use of a letU structure, which introduces another

register in the state |~0〉, but which is returned to this state at the end by the design

of the algorithm (This register is again given explicitly in the circuit representation

in [VBE95] p.151).

With a library of reversible arithmetic functions, we can now go on to look

at the final piece required before an implementation of Shor’s algorithm can be

defined. Looking back at the circuit given in figure 2.7 we can see that the last

piece we need is an implementation of the inverse quantum Fourier transform.

108

6.4 Quantum Fourier transform

The QFT as introduced in section 2.6.5, is given by the circuit diagram in figure

2.6. We can notice that the structure is somewhat recursive with respect to the

controlled Rk rotations. In fact, the structure seems to be inversely recursive, with

the base case of the recursive structure (a single Hadamard rotation) acting on the

last qubit in the register. As we can represent the qubit register in terms of a list

of qubits, this inverse recursive structure lends itself nicely to an accumulative

definition in Haskell, similar to the list reversing example given previously (in

section 4.2). In fact, we can use our conditional construct over lists of qubits to

define the QFT in terms of an accumulator function over a list of Boolean values.

qft :: [Qbit]→ U

qft qs = condQ qs (λbs → qftAcu qs bs [])

qftAcu :: [Qbit]→ [Bool]→ [Bool]→ U

qftAcu [] [] = •

qftAcu (q : qs) (b : bs) cs = qftBase cs q � qftAcu qs bs (b : cs)

qftBase :: [Bool]→ Qbit → U

qftBase bs q = f ′ bs q 2

where f ′ [] q = uhad q

f ′ (b : bs) q x = if b then (rotK x q) � f ′ bs q (x + 1)

else f ′ bs q (x + 1)

rotK :: Int → Qbit → U

rotK k q = uphase q (1.0 / (2.0 ↑ k))

The accumulator function (qftAcu) ensures that each recursive call does the nec-

essary controlled rotK rotations, by means of the recursive function qftBase.

Shor’s algorithm, as we shall see in the following section, actually makes use

of the inverse QFT. Fortunately, the inverse QFT is just the inverse of the QFT

circuit as would be expected, and can be given in QIO by use of the urev function.

Namely, the inverse QFT is given by (urev qft) :: [Qbit]→ U .

109

shorU :: QInt → QInt → Int → Int → U
shorU k i1 q N = hadamards k �

modExp N a k q �

qftI k

Figure 6.2: Shor’s algorithm in QIO: The unitary that represents the quantum
part of Shor’s algorithm, corresponding to the circuit diagram in figure 2.7.

6.5 Shor’s algorithm in QIO

If we look look back at figure 2.7, we can see the essential building blocks for an

implementation of Shor’s algorithm, or at least the quantum period finding part of

the algorithm. We have developed the necessary modular exponentiation function,

which acts exactly as is required taking the input registers from the state |k〉⊗ |~1〉

to the state |k, akmodN〉, where the value for N is the number to be factored,

and the value a has been computed classically to be co-prime to N . We have also

developed a unitary for the quantum Fourier transform on a register of qubits. So

we can think of Shor’s algorithm as acting on a quantum register representing an

integer, we can just lift the inverse QFT as a function that acts on a QInt .

qftI :: QInt → U

qftI (QInt i) = urev (qft i)

The last piece we need to define is also the simplest, and just applies the

Hadamard rotation to each of the qubits in a QInt .

hadamards :: QInt → U

hadamards (QInt []) = •

hadamards (QInt (q : qs)) = uhad q � hadamards (QInt qs)

The full unitary that represents the quantum part of Shor’s algorithm can now

be constructed from these pieces, leading to definition given in figure 6.2.

To give the complete computation that represents the quantum part of Shor’s

algorithm, we must ensure that the two QInt inputs are initialised to the values |~0〉

and |~1〉 as required. The computation still takes N the number to be factorised,

and a corresponding a value (co-prime to N) as its inputs, and the output is the

value measured in the top register after the application of the unitary, this value

110

is a candidate for the period of the given modular exponentiation function.

shor :: Int → Int → QIO Int

shor a N = do i0 ← mkQ 0

i1 ← mkQ 1

applyU (shorU i0 i1 a N)

measQ i0

To create the actual function which uses this quantum algorithm to compute

the factors of an input integer can now be defined classically. As not every value

of a gives rise to a solution, the algorithm is probabilistic. This means we can use

a random number generator to pick candidates for a < N and use the euclidean

algorithm to efficiently calculate the greatest common divisor of the two. In the

case this is 1, we can use the value of a in the quantum part (if the greatest

common divisor of a and N isn’t 1, then this is in fact a factor of N). Once

we have the period from the quantum part of the algorithm, we can do some

classical post-processing to either find the factors of the input N , or have to

repeat the quantum part of the algorithm again with a different value for the a

candidate. The classical pre- and post-processing can easily be coded in Haskell

to give the full factorisation function (factor :: Int → QIO (Int , Int)). The full

implementation of such a function is given in the on-line source-code [Gre09], and

we can already simulate a typical evaluation of running such a QIO computation.

E.g. run (factor 15) gives (5, 3).

111

Chapter 7

Implementing QIO in Haskell

Having introduced the QIO API, and gone through some examples of quantum

computation written in QIO , we can now go on to look at the implementation.

More specifically, we look at how the run, runC , and sim functions are realised,

concentrating on how measurement gives rise to the use of a monadic structure.

It is these simulator functions, most specifically the run function, that give a

corresponding semantics to our QIO computations.

In theory, if we had a quantum platform on which to run our QIO computa-

tions then the run function would be much more efficient, but as it stands, we

simulate the quantum behaviour using a classical random number generator. This

classical simulation of quantum behaviour gives rise to large overheads in storing

representations of quantum states (exponential in the number of qubits), and also

of running our unitaries over such representations of quantum state (again expo-

nential in the number of qubits).

To represent quantum states within a classical setting, we can follow the for-

malism that a quantum state can be described in terms of a sum over all its base

states and their corresponding complex amplitudes. This can be generalised in

Haskell by defining a class of Heaps that represent the base states, and a cor-

responding class of Vectors that represent a super-position of these base states,

whereby each base state in the vector is assigned a complex amplitude. We have

112

designed our vector as a class dubbed VecEq , where all the primitive operations

on the vectors are implemented such that they keep the overall state of the vector

normalised. This normalisation equates to summing the amplitudes of any equal

base states, and as such, the number of heap structures within the vector will

never be more than the number of base states required to fully describe the corre-

sponding quantum state. Building the normalisation directly into the vector class

follows from the fact that only types with definable equality can be normalised

(such as our implementation of heaps) in this way. It is nice to note here that the

runC function, that can only simulate the classical subset of QIO , only needs a

single heap structure to represent the entire classical state as would be expected.

7.1 Heaps

We define the Heap class by

class Eq h ⇒ Heap h where

initial :: h

update :: h → Qbit → Bool → h

(?) :: h → Qbit → Maybe Bool

forget :: h → Qbit → h

hswap :: h → Qbit → Qbit → h

hswap h x y = update (update h y (fromJust (h ? x)))

x (fromJust (h ? y)

So, any data structure that provides the necessary functions can be used as

a heap structure for our implementation of QIO . Defining heaps in terms of a

class means that the actual underlying implementation can be changed if a more

efficient data structure is found (although, as we’ll see later, our use of Haskell’s

Map data type is efficient for the task at hand). We can go on now to look now

at what the functions in the Heap class actually represent.

The first thing that a heap must provide is an element that represents an empty

113

heap structure, in which no qubits have yet been initialised. This element is called

the initial element, as it represents the initial state of a heap before anything has

occurred.

The update function is used to accommodate the application of a mkQbit prim-

itive. Given a current heap structure, a reference to a qubit, and the Boolean state

in which to initialise this qubit, the update function returns a new heap, in which

the referenced qubit is assigned the given Boolean value. If the qubit isn’t already

represented in the heap then it is added, as is the case when a mkQbit primitive

occurs, but if the qubit is represented in the heap, then its value is updated to

the given Boolean. This means that the update function can also be used when a

rotation primitive occurs, as the only effect that a rotation can have on an indi-

vidual base state is to apply the classical not function to one of the qubits in the

base state.

A query function (?) must also be provided that simply returns the current

value of the qubit being referenced. The Maybe monad is used here so that unini-

tialised qubits can have the state Nothing , and not give rise to an undefined heap.

If a Nothing value occurs during the evaluation of a computation, then a suit-

able error must be thrown. The main case where an error of this sort occurs in

practise is in a conditional where the control qubit appears as a variable in one of

the branches. To accommodate the throwing of a run-time error whenever such a

conditional occurs, the control qubit is temporarily forgotten from each base state

using the provided forget function and hence, if it is used in one of the branches,

the query function will fail, returning the error.

The hswap function returns the given heap, but with the values of its two

argument qubits swapped around. This, in essence, swaps the positions of the two

qubits with-in the heap, and is used whenever a swap primitive occurs in a QIO

computation

As we previously mentioned, any data structure that provides an instance of the

Heap class could be used as the basis for heaps in QIO . Our implementation makes

114

use of Haskell’s Map data type, which can be used to define a correspondence

between Booleans and qubits in exactly the way our heaps require. The Map

data type is an efficient implementation of key-value maps, and as such is a good

candidate for our heaps. The operations for heaps can be directly translated into

the primitive operations provided by the Map type.

type HeapMap = Map.Map Qbit Bool

instance Heap HeapMap where

initial = Map.empty

update h q b = Map.insert q b h

h ? q = Map.lookup q h

forget h q = Map.delete q h

As the classical simulator function runC only requires a single heap structure

to represent the entire state of the system, we can already define it by translating

each of the QIO primitives into their corresponding primitives on the HeapMap

data-type. In fact, the system must also keep track of the next available qubit

so that a mkQbit primitive is guaranteed to return a reference to a new qubit,

meaning that we can define a classical state by the type StateC as follows.

data StateC = StateC {freeC :: Int , heap :: HeapMap}

It is the pure nature of all these heap operations that also means we can give the

runC classical simulator as a pure function.

We move on now to look at our vector structures that are used by the QIO

simulator functions run and sim to represent fully quantum states. These func-

tions translate the QIO primitives into the primitive functions available for our

VecEq structures, which, as we’ll also see, in many cases corresponds to mapping

the underlying heap primitives over every heap in the vector.

115

7.2 Vectors

To hold our quantum states we define a class of vectors. As we mentioned, we

have designed these vectors such that all the primitive operations available for

them, keep the overall state of the vector normalised. This normalisation equates

to combining equal base state terms by summing their complex amplitudes (an

action that can lead to deconstructive interference, as is expected).

The vectors we define should be able to be an instance of the Monad type-class

in Haskell, such that it is possible to define the semantics of our monadic QIO

computations in terms of monadic operations acting on these vectors. We shall

look at how this is achieved after introducing the VecEq class of vectors. The

requirement that our underlying type in the vectors has definable equality causes

a few problems with this monadic definition, but we will see how we can make use

of a trick suggested in [Sit08] to achieve such a definition.

The VecEq class is given by

class VecEq v where

vzero :: v x a

(⊕) :: (Eq a,Num x)⇒ v x a → v x a → v x a

(⊗) :: (Num x)⇒ x → v x a → v x a

(@) :: (Eq a,Num x)⇒ a → v x a → x

fromList :: [(a, x)]→ v x a

toList :: v x a → [(a, x)]

and we can now go over each of these class functions to describe the actions they

must define. As an aside, these vectors can have any numeric type x to represent

the amplitudes, and be over any type a with definable equality. To define quantum

computation we use them with the complex numbers, and over heaps, and as such

often use the terminology associated with this specific case.

The vzero element is just an empty vector, which is used in a similar way to

the initial element of the Heap class, that is to describe the state of an empty

quantum system before any qubits have been initialised.

116

The (⊕) operation is used to combine two vectors, and it is specifically this

operation that keeps the vectors normalised. In combining two vectors, we require

that the underlying type the vector holds has a definable equality, that is, that

it is a member of the type-class Eq . When combining two vectors, this operation

will simply sum the amplitudes of any underlying base states that are present in

both input vectors.

The (⊗) operation is a form of scalar multiplication for vectors, and is used to

multiply all the complex amplitudes in a vector by the given scalar.

The (@) function is a kind of look-up function, that corresponds to finding the

current amplitude of a given base state within the overall state represented by the

vector.

The fromList and toList functions are simply helper functions that are used

in defining the VecEq class as a monadic structure. In fact, the implementation

we have used for an instance of the VecEq class is simply a data-type that repre-

sents a vector as a list of pairs, and these operations are simple to define (as the

constructor and deconstructor elements of that data-type).

data VecEqL x a = VecEqL {unVecEqL :: [(a, x)]} deriving Show

The vzero element of such a list based vector is just the empty list.

vEqZero :: VecEqL x a

vEqZero = VecEqL []

The (⊕) function (given by vEqPlus) can be given using a fold operation that

steps through the elements in the second argument vector, and uses the add func-

tion to check if the current element is already a member of the first vector. If this

is the case, then the corresponding amplitudes are added, but if this isn’t the case

then the element is concatenated onto the end of the first vector.

vEqPlus :: (Eq a,Num x)⇒

VecEqL x a → VecEqL x a → VecEqL x a

(VecEqL as) ‘vEqPlus ‘ vbs = foldr add vbs as

add :: (Eq a,Num x)⇒ (a, x)→ VecEqL x a → VecEqL x a

117

add (a, x) (VecEqL axs) = VecEqL (addV ′ axs)

where addV ′ [] = [(a, x)]

addV ′ ((by@(b, y)) : bys) | a ≡ b = (b, x + y) : bys

| otherwise = by : (addV ′ bys)

The (⊗) function (given by vEqTimes) simply maps the multiplication operation

by the given scalar to each complex amplitude in the vector, and the (@) function

(given by vEqAt) steps through the vector until the matching base state is found.

If the base state is not found in the vector then then an amplitude of zero is

returned.

vEqTimes :: (Num x)⇒ x → VecEqL x a → VecEqL x a

l ‘vEqTimes ‘ (VecEqL bs) | l ≡ 0 = VecEqL []

| otherwise

= VecEqL (map (λ(b, k)→ (b, l ∗ k)) bs)

vEqAt :: (Eq a,Num x)⇒ a → VecEqL x a → x

a ‘vEqAt ‘ (VecEqL []) = 0

a ‘vEqAt ‘ (VecEqL ((a ′, b) : abs)) | a ≡ a ′ = b

| otherwise

= a ‘vEqAt ‘ (VecEqL abs)

These definitions can now be used to give VecEqL as an instance of the VecEq

class.

instance VecEq VecEqL where

vzero = vEqZero

(⊕) = vEqPlus

(⊗) = vEqTimes

(@) = vEqAt

fromList as = VecEqL as

toList (VecEqL as) = as

The requirement that the underlying type is a member of Eq leads to a problem

that we can not define VecEq as a monad, which we require so we can sequence the

118

monadic QIO operations over it. We follow the technique suggested in ([Sit08]),

but for restricting the monad by means of an instance of Eq instead of Ord . We

can define an EqMonad class, whose members correspond to the restricted monad

operations we wish to define.

class EqMonad m where

eqReturn :: Eq a ⇒ a → m a

eqBind :: (Eq a,Eq b)⇒ m a → (a → m b)→ m b

We can’t just use this definition in place of a monad as it would prevent us from

being able to use do notation. We can however define VecEq as a member of this

class, with the functions corresponding to the monadic behaviour we require.

instance (VecEq v ,Num x)⇒ EqMonad (v x) where

eqReturn a = fromList [(a, 1)]

eqBind va f = case toList va of

([])→ vzero

((a, x) : [])→ x ⊗ f a

((a, x) : vas)→ (x ⊗ f a)⊕ ((fromList vas) ‘eqBind ‘ f)

In order to define EqMonad as a form of monad in Haskell, we need to embed

it in a monadic structure that can be defined by the AsMonad data-type.

data AsMonad m a where

Embed :: (EqMonad m,Eq a)⇒ m a → AsMonad m a

Return :: EqMonad m ⇒ a → AsMonad m a

Bind :: EqMonad m ⇒

AsMonad m a → (a → AsMonad m b)→ AsMonad m b

instance EqMonad m ⇒ Monad (AsMonad m) where

return = Return

(>>=) = Bind

The overall AsMonad structure is indeed an instance of the Monad class in

Haskell, and as such can be used with the do notation as we required. However, to

be actually able to use our embedded instance of the EqMonad we need a function

119

unEmbed , which as the name suggests unembeds the EqMonad structure.

unEmbed :: Eq a ⇒ AsMonad m a → m a

unEmbed (Embed m) = m

unEmbed (Return a) = eqReturn a

unEmbed (Bind (Embed m) f) = m ‘eqBind ‘ (unEmbed ◦ f)

unEmbed (Bind (Return a) f) = unEmbed (f a)

unEmbed (Bind (Bind m f) g) = unEmbed

(Bind m (λx → Bind (f x) g))

This gives us a fully monadic implementation of the VecEq type of vectors,

and as such we can now go on to look at how the primitive QIO operations can

be translated into the primitive operations of the VecEq type.

7.3 Evaluating QIO computations

So we now have a structure HeapMap that can be used to represent the base states

in the description of a quantum state, and a structure VecEqL that can be used to

define a sum of these base states, along with their corresponding amplitudes. As

such, we can now define the specific instance of the VecEqL type that we shall be

using to represent the pure quantum states in our computations. Specifically, a

Pure state is described by a VecEqL structure over the HeapMap structure, along

with complex numbers C to represent the amplitudes as would be expected.

type Pure = VecEqL C HeapMap

We can now think of a unitary operator in terms of the effect it has on each

base state within a pure state. In fact, we can define the type Unitary to represent

our unitary operators in such a way. The extra Int argument represents the next

available qubit, just as we needed to keep track of it for the classical simulator.

data Unitary = U {unU :: Int → HeapMap → Pure }

When evaluating the application of a QIO unitary (in U), these new Unitary

functions are mapped over each base state in the whole pure state of the system.

120

The results of this mapping are then joined using the underlying ⊕ operation

defined for the Pure data-type. The approach we take to evaluate our QIO com-

putations in this way is to define a member of the Unitary data-type for every

corresponding primitive member of the U datatype. So that the monoidal be-

haviour of the U data-type can also be modelled in this way, we must define a

monoidal behaviour for the Unitary data-type. This monoidal behaviour makes

use of the underlying (embedded) monadic behaviour of the Pure data-type.

instance Monoid Unitary where

• = U (λfv h → unEmbed (return h))

(U f) � (U g) = U (λfv h → unEmbed (do h ′ ← Embed (f fv h)

h ′′ ← Embed (g fv h ′)

return h ′′))

With all the structure in place, we can now define the actual function runU ,

which lifts members of the U data-type to their corresponding Unitary function.

runU :: U → Unitary

runU UReturn = •

runU (Rot x a u) = uRot x a � runU u

runU (Swap x y u) = uSwap x y � runU u

runU (Cond x us u) = uCond x (runU ◦ us) � runU u

runU (Ulet b xu u) = uLet b (runU ◦ xu) � runU u

The functions uRot , uSwap, uCond and uLet actually convert each of the

underlying U type into a Unitary . For example, the uRot function is as follows:

uRot :: Qbit → Rotation → Unitary

uRot q r = (uMatrix q (r (False,False),

r (False,True),

r (True,False),

r (True,True)))

uMatrix :: Qbit → (C,C,C,C)→ Unitary

uMatrix q (m00 ,m01 ,m10 ,m11) = U (λfv h → (

121

if (fromJust (h ? q))

then (m01 ⊗ (unEmbed (return (update h q False))))

⊕ (m11 ⊗ (unEmbed (return h)))

else (m00 ⊗ (unEmbed (return h)))

⊕ (m10 ⊗ (unEmbed (return (update h q True))))))

We can look now at defining how the other monadic constructors of QIO are

dealt with during evaluation. In order to do this, we must first define a data

structure that can be used to keep track of the state of our system. This data

structure (StateQ) consists of a member of the Pure data-type, that corresponds

to the current quantum state, and an integer that represents the next free qubit.

We again must keep track of the next available qubit so that the system can assign

a new qubit when necessary.

data StateQ = StateQ {free :: Int , pure :: Pure }

With our StateQ structure defined, we can look at how the monadic construc-

tors of QIO are evaluated. As we can now think of this evaluation as a stateful

computation, we are able to use Haskell’s State monad, as was introduced in sec-

tion 4.4.1, to define our evaluation functions. We will look shortly at what the

PMonad class requirement is, but for now we can just think of it as providing a

merge function that describes how measurements and results are presented back

to the user, and we’ll see how the two instances of PMonad we provide relate to

the only differences between the sim and run functions. This evaluation function

is called evalWith as a state is stored implicitly by the use of the State monad, and

the evalWith function can be thought of as evaluating the given QIO computation

with that state.

evalWith :: PMonad m ⇒ QIO a → State StateQ (m a)

The QReturn primitive is just the return of the monad.

evalWith (QReturn a) = return (return a)

The MkQbit qubit primitive updates the overall state by increasing the free

variable, and updating the pure state with a qubit initialised in the state corre-

122

sponding to the given Boolean

evalWith (MkQbit b g) = do (StateQ f p)← get

put (StateQ (f + 1)

(updateP p (Qbit f) b))

evalWith (g (Qbit f))

The ApplyU primitive uses the runU function as described above, and updates

the current state accordingly.

evalWith (ApplyU u q) = do (StateQ f p)← get

put (StateQ f (unEmbed (

do x ← Embed (p)

x ′ ← Embed (uu f x)

return x ′

)))

evalWith q

where U uu = runU u

The Meas primitive is evaluated by splitting the Pure state about the given

qubit, creating two Pure states that represent the state of the system for each of

the possible measurement outcomes. The computation then proceeds over both of

these Pure states, giving a pair of results. The merging of these two results is left

to the merge function of the underlying PMonad . We shall look at the definition

of a PMonad shortly, and how this merge function defines the behaviour of the

overall evaluation.

evalWith (Meas x g) = do (StateQ f p)← get

(let Split pr ift iff = split p x

in if pr < 0 ∨ pr > 1

then error "pr < 0 or >1"

else do put (StateQ f ift)

pift ← evalWith (g True)

put (StateQ f iff)

123

piff ← evalWith (g False)

return (merge pr pift piff))

We’ve seen how the behaviour of the evaluation function depends on the merge

function provided by an underlying PMonad structure. In fact, we define a

PMonad as just a Monad along with this extra merge function.

class Monad m ⇒ PMonad m where

merge :: R→ m a → m a → m a

The merge function can be thought of as a function that defines how two compu-

tations of the same type can be combined, depending on a real argument to that

function. This real argument represents the probability of each of the computa-

tions occurring, and as such, we are able to define instances of the PMonad that

give rise to the two different behaviours of our simulation functions (sim and run).

In fact, to be more specific, the real argument represents the probability of the

first computation occurring (p), and the probability of the second computation

occurring can be calculated as 1− p.

For the run function, we define the IO monad as an instance of a PMonad .

To do this, we define the merge function to make use of the IO monad’s random

number generator to choose one of the two merged computations to perform,

probabilistically depending on the given probability.

instance PMonad IO where

merge pr ift iff = Random.randomRIO (0, 1.0)

>>= λpp → if pr > pp then ift else iff

For the sim function however, we define a type constructor that represents

a probability distribution over any type a. This type constructor is similar to

the VecEq type constructor introduced for quantum states, but doesn’t have the

requirement that the underlying type is a member of Eq , and hence doesn’t keep

the vectors normalised in the same way.

data Prob a = Prob {unProb :: Vec R a }

The primitive operations available on the Vec type constructor are pretty much the

124

same as for the VecEq type constructor, just without the normalisation behaviour.

The R values that correspond to each member of the vector are the probabilities

of each member in the distribution. So that we can use this structure in our

merge operation, we must define this Prob type constructor as an instance of the

PMonad class, and this first entails that we first define it as an instance of the

Monad class.

instance Monad Prob where

return = Prob ◦ return

(Prob ps)>>= f = Prob (ps >>= unProb ◦ f)

We can now define the corresponding merge operation, and note how it gives

rise to the probability distributions when used by the sim function.

instance PMonad Prob where

merge pr (Prob ift) (Prob iff) = Prob ((pr ⊗ ift)

⊕ ((1− pr)⊗ iff))

The merge function multiplies each of the underlying probability distribution ar-

guments by their respective probabilities, and then joins these to create the new

probability distribution, as gained by the result of a measurement.

Lazy evaluation is specifically useful here as if the merge function only requires

one of the Pure states (as is the case for the run function), then the other Pure

state is never evaluated.

We can finish this section by giving the final definitions for the run and sim

functions. In fact, they both call the same eval function (which calls evalWith

over an empty initial state). The types given for each of the simulator functions

inform the type-system which PMonad should be used in the evaluation of the

QIO computations.

eval :: PMonad m ⇒ QIO a → m a

eval p = evalState (evalWith p) initialStateQ

run :: QIO a → IO a

run = eval

125

sim :: QIO a → Prob a

sim = eval

This chapter has so far introduced an implementation of the QIO monad in

Haskell. The next section goes on to discuss some of the pitfalls of this implemen-

tation, and lays out the case for reimplementing QIO in a stronger type-system,

as is the case in chapter 9.

7.4 Remarks on QIO in Haskell

This implementation of QIO in Haskell provides a monadic interface to quantum

programming from Haskell. As it stands, it is possible to create quantum algo-

rithms in terms of unitary structures away from the monadic interface, and then

define quantum computations as instances of these algorithms, along with initial-

isations and measurements of the necessary quantum data-types. This monadic

interface should be more natural to functional programmers, who are used to

writing monadic structures, such as computations in the IO monad, and as such

should provide a nice footstep into the world of quantum programming too. In

defining the monadic structure, along with the simulator functions, we have bor-

rowed techniques from works such as [Swi08, SA07], which also helps us to reason

about our monadic programs because of the constructive semantics assigned to

their evaluation. However, as it stands, their are some definable computations in

QIO , or more specifically unitary structures in U that don’t actually represent a

unitary semantics, and as such have to be caught at run-time by the evaluation

functions. This behaviour is very bad in the long term, as we are using the classical

properties of our simulator functions to catch these errors. In an actual quantum

system, these type of errors could not necessarily be caught in the same way as

there is no access to the state of the system (as measurements would disrupt the

quantum state). As such, we cannot use such an implementation of QIO to reason

about the quantum algorithms written in it, and it would make sense to look at

126

ways in which we could use a stronger type system to achieve this.

The specific problems that can occur in this implementation are un-unitary

versions of each of the urot , cond , and ulet constructors. The urot construct

doesn’t check the unitarity of its argument matrix, the ulet construct has the side

condition that any temporary qubits must be set back to their initial state, and

the cond has to ensure that the control qubits are separable from the qubits used

in its sub-unitary expression. For instance, a valid member of the QIO unitary

syntax (U) would be the following notUnitary structure.

notUnitary :: U

notUnitary = cond q (λx → if x then unot q else •)

This doesn’t define a unitary operation as the qubit q is always set to the state |0〉.

This error is caught at run-time, as the qubit q is clearly not separable from the

sub-unitary, as it is used in the sub-unitary. However, it would be more practical,

and make more sense computationally, if such an un-unitary structure wasn’t a

valid member of the syntax.

Dependent types are one solution to this problem and we shall look in chapter 9

at a reimplementation of QIO in such a dependently typed language (specifically

Agda). There has been work on faking dependent types in Haskell [McB02],

which would mean we still have all the abstractions of Haskell at hand, but it

makes more sense to use a system where the dependent type-system has been

specifically designed for such a purpose. The next chapter (chapter 8) introduces

Agda, and shows how dependent types can be used to give a formal verification

of the specification of our programs. We’ll also see how we can use such a type

system to ensure that the new version of the U data-type is able to ensure the

unitarity of the structures within it. In this sense, we are moving slightly away

from functional programming, and into the realms of Type Theory, which also

gives us a more formal semantics of our quantum computations, and thus gives us

more power to reason about quantum algorithms written in QIO .

Another underlying design factor of the QIO monad is its relation to the gate

127

model of quantum computation. In fact, most of this thesis has built upon the

gate model from introducing in it chapter 2, modelling it categorically in chapter

3, to the design of the unitaries in QIO . As we have also seen previously in chapter

2, there are other models of quantum computation, although the gate model is

still the most widely used. It would be possible to provide a different semantics

for QIO in many of these models, and as recent research has been showing that

the one-way model of quantum computation [BB06] could provide a more realistic

way for creating a real world quantum computer, one such model we would like

to model is a semantics based on the measurement calculus [DKP07]. Although

such work is not looked at in this thesis, it would be one direction in which further

research into the area could proceed.

128

Chapter 8

Dependent Types

We have now introduced the implementation of an interface to quantum program-

ming (QIO) from the functional programming language Haskell, and mentioned

how moving to a setting with a stronger type system, such as a dependently typed

system, could be used to overcome some of the pitfalls of the implementation,

namely the need for run-time errors. We go on to look now at such a reimplemen-

tation of the quantum IO monad in a dependently typed setting, but shall first

introduce the concept of dependent types and the language Agda.

Agda [Nor07] is a dependently typed language influenced heavily by Haskell

and the dependently typed language Epigram [McB99]. It defines itself as a de-

pendently typed language able to be used to define inductive families that are

indexed by values, and not just by types. It can also be thought of as a proof

assistant as it is based on intuitionistic type theory [ML84].

The following section aims to introduce the reader to the language with some

simple examples of dependent types. More information on Agda is available on-

line from the Agda wiki http://wiki.portal.chalmers.se/agda/. The wiki also

contains links to other more in depth tutorials on the language, and to a standard

library containing many useful data-types and their corresponding functions.

129

After introducing Agda, we shall go on to look at how we can use Agda as
a proof assistant, and develop code that can be thought not just as a program,
but also as a proof of its own speci�cation. This formalism comes from the types
given by Per Martin-L®f's intuitionistic type theory [ML84], and we go on to
give examples of how reversible programs can be speci�ed in Agda, which are
also proofs of their own reversibility. The last section of this chapter also shows
how despite Agda not having a type-class system akin to Haskell's, we can de�ne
monoids and monads in Agda in the form of type constructors.

8.1 An introduction to Agda

Agda allows us to de�ne data types as inductive families, so a simple data type
to de�ne is that of the natural numbers. Agda allows the use of Unicode, so we
are able to de�ne the type of natural numbers as the type N.

data N : Set where
zero : N

suc : N → N

This de�nition of the natural numbers states that zero is a natural number, and
given any other natural number n, we are able to create another natural number,
namely the successor of n, or suc n. This de�nition of the natural numbers is just
the Peano de�nition. We can could now de�ne the natural numbers one, two, and
three as follows:

one : N

one = suc zero
two : N

two = suc one
three : N

three = suc two

130

It is important to note here, that as the type system of Agda is stronger than the
type system of Haskell, it is necessary for the type of a function to always be given
by the programmer.

Once a type is de�ned it is possible to de�ne functions over these types in
a very similar manner as in Haskell. For example, we can de�ne the addition
function acting on natural numbers.

+ : N → N → N

zero + n = n
suc m + n = suc (m + n)

In de�ning a function, Agda allows the programmer to use the underscore character
to enable the creation of in-line functions. Each underscore character that appears
in the name of a function is treated as the position of an argument to that function.
Agda is also a total language, meaning that the functions de�ned must be total
with respect to the input types. In essence, this means that the de�nition of a
function in Agda must include a de�nition clause for every valid element of each
of the input types speci�ed by the functions type signature.

So, we have created the type of natural numbers, but this isn't a dependent
type and could have been de�ned in a very similar manner in Haskell. It is how
we can use values in the de�nition of data types that makes Agda a dependently
typed language, so we can now de�ne the type of vectors indexed by their length.

data Vec (a : Set) : N → Set where
[] : Vec a zero
:: : ∀ {n} (x : a) (xs : Vec a n) → Vec a (suc n)

That is, a vector over any arbitrary type a is either the empty vector ([]) of length
zero, or given any element x of type a and a vector over type a of length n we
can create a new vector over type a with length suc n. Compare this to how
we de�ned lists in Haskell, the only di�erence is that these vectors are indexed
by their length. This de�nition shows how we can use implicit arguments in the

131

de�nition of functions, that the type checker is able to infer at compile time. In the
de�nition above of the _::_ constructor, the argument n is an implicit argument
as the type-checker is able to infer it directly from the type of the argument vector
xs, and as such is given in the type of the function surrounded by curly brackets.

With a dependently typed data structure, we can create functions that only
take certain members of the type as arguments. For example, it does not make
sense to ask for the head element of an empty vector. In Haskell, we would have
to return an error, but in Agda we are able to de�ne our head function such that
only non-empty vectors can be passed to it as an argument.

head : ∀ {a n} → Vec a (suc n) → a
head (x :: xs) = x

The type of the head function states that the input vector must have length of
at least the successor of any natural number (n : N), meaning that the empty
vector isn't a valid argument to the function. We can also use previously de�ned
functions to act on the values within the types in the type-signature of a new
function de�nition. For example, the concatenation function acting on two vectors
of length m and n, will return a vector of length m + n.

++ : ∀ {a m n} → Vec a m → Vec a n → Vec a (m + n)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Another interesting type that can be de�ned in dependently typed program-
ming languages is that of a type indexed by how many elements it contains. That
is a �nite set of n elements for any n : N. We can do this in Agda quite simply
using our de�nition of N.

data Fin : N → Set where
zero : ∀ {n : N} → Fin (suc n)
suc : ∀ {n : N} → (i : Fin n) → Fin (suc n)

132

zero is an element of all �nite sets, and given an element i in a �nite set of size
n, suc i is in the �nite set of size suc n. The Fin data-type is useful if we want
to restrict the size of an argument to a function. For example, it is possible to
think of members of Fin n as members of the natural numbers less than n, (and
Agda allows us to re-use constructor names) and hence can de�ne a subtraction
function that ensures its second argument is less than the �rst.

- : (n : N) → Fin n → N

zero - ()

suc y - zero = suc y
suc y - suc i = y - i

The () is a dummy argument that the type-checker uses to state that there is no
valid argument to the function, or more precisely in this speci�c case that the type
Fin zero is uninhabited.

Another useful function that makes use of the Fin data-type to restrict the
input arguments is the lookup function for vectors.

lookup : ∀ {a n} → Fin n → Vec a n → a
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

The Fin argument in this case ensures that the given index is indeed a valid position
in the vector, and the function returns the element of the vector at that position.

De�ning functions in Agda is achieved using pattern matching in a very similar
manner as it is used in Haskell. However, it also provides what is known as thewith
construct to allow functions to be de�ned by pattern matching over intermediate
results. A nice example of this is the �lter function which acts on lists. The �lter
function creates a sublist of the given list, of all elements from the original list
that ful�l some given Boolean function.

data List (a : Set) : Set where
JK : List a

133

:: : a → List a → List a
�lter : ∀ {a : Set} → (f : a → Bool) → List a → List a
�lter f JK = JK

�lter f (x :: xs) with f x
... | true = x :: �lter f xs
... | false = �lter f xs

The with clause evaluates the Boolean function over the head (x) of the list and
then pattern matches over the result of this evaluation to either leave x in the
returned list or drop it from the returned list. The recursive call is again used to
traverse the rest of the list.

An important construct in dependently typed languages are what are known
as Σ-types. These are often referred to as dependent pairs, but can be generalised
to tuples of any length. A Σ-type can be thought of as a pair such that the type
of the second value of the pair depends on the �rst value of the pair. For example,
this can be useful if we want to know properties about a speci�c type as we can
construct a Σ-type whose �rst member is of the given type, and whose second
member is a proof of some property of that member of the type. The following
section (8.2) goes into more details of how proofs can be constructed in Agda, and
will also give some examples of how Σ-types can be used.

data Σ (A : Set) (B : A → Set) : Set where
, : (x : A) (y : B x) → Σ A B

The type de�nition clearly shows that the �rst element of the pair can be in any
arbitrary type A, but that the type of the second argument can depend on the
value x : A. We can also de�ne a simple non-dependent product as a member of
the Σ-type by passing a dummy argument to the second type.

× : (A B : Set) → Set
A × B = Σ A (λ → B)

134

It is often useful to have projection functions for these dependent pairs, which
simply return the element required.

proj1 : ∀ {A B} → Σ A B → A
proj1 (x, y) = x
proj2 : ∀ {A B} → (p : Σ A B) → B (proj1 p)
proj2 (x, y) = y

8.2 Proofs in Agda

We brie�y mentioned how Agda can be thought of as a proof assistant as it is
based on Per Martin-Löf's intuitionistic type theory. Proofs can be constructed
by de�ning a type which de�nes some property that we wish to prove, and then
if we can construct an element of that type we have our proof. Equality types
are a relatively simple, but also powerful construct that we can use in Agda to
construct proofs of equality between elements of a data-type. The equality type is
de�ned as a type with only one constructor, namely the proof of re�exivity, that
every element of any arbitrary type is equal to itself.

data _≡_ {a : Set} (x : a) : a → Set where
re� : x ≡ x

If we want to prove that two values are equal then we need to construct an element
of the _≡_ data type, that the type-checker of Agda is able to normalise down
to a proof of re�exivity. For example, we can look at our function for addition
over the natural numbers from the previous section and construct an element of
the equality type that is a proof that the function is commutative, that is, given
two arbitrary natural numbers m and n we can construct a member of the type
(m + n) ≡ (n + m).

+-identity : ∀ {n} → n + zero ≡ n
+-identity {zero} = re�

135

+-identity {suc n} = cong suc +-identity
m+1+n≡1+m+n : ∀ m n → m + suc n ≡ suc (m + n)
m+1+n≡1+m+n zero n = re�
m+1+n≡1+m+n (suc m) n = cong suc (m+1+n≡1+m+n m n)
+-comm : ∀ m n → m + n ≡ n + m
+-comm zero n = sym +-identity
+-comm (suc m) n = trans (cong suc (+-comm m n))

(sym (m+1+n≡1+m+n n m))

The de�nition uses helper functions, which are actually proofs of other equal-
ity types. We use the transitivity and symmetry of the equality type, and the
congruence of the equality type over function application.

trans : ∀ {m n o} → m ≡ n → n ≡ o → m ≡ o
sym : ∀ {m n} → m ≡ n → n ≡ m
cong : ∀ {A B m n} → (f : A → B) → m ≡ n → f m ≡ f n

In the proofs given, we use this congruence over the successor constructor, i.e.
that a proof of m ≡ n can be lifted to a proof of suc m ≡ suc n. The +-identity
function is a proof that zero is a right identity of addition (zero is also a left
identity of addition and the proof of this is trivial due to the de�nition of _+_).
The m+1+n≡1+m+n function is also a proof of the equivalence given by its type,
and is used along with the trans function to in essence move a successor construct
between either side of an addition.

The given proof of the commutativity of the addition function over natural
numbers is quite a simple proof, but it is not necessarily obvious how to construct
it from the given helper functions. Agda comes to the aid here allowing holes
to be left in the de�nition of functions, so functions (and hence proofs) can be
constructed in a methodological manner. At any time, the type-checker is able to
tell you the type required to �ll the current hole, along with the variables currently
in scope.

136

We shall move on now to look at how monoids and monads can be de�ned in
Agda, and then shall look at how reversible computations in Agda can make use
of these proof structures we have just seen to provide a formally veri�ed proof of
their reversibility.

8.3 Monoids and Monads in Agda

In the next chapter (chapter 9) we go on to de�ne a new version of the Quantum IO
Monad in Agda using some of the techniques and constructs we have introduced
above. It is useful to note that the notion of Monoids and Monads translate very
nicely from their Haskell counterparts. This section shall just give a quick overview
of Monads and Monoids in Agda, and shows how despite Agda not having type-
classes we are easily able to use Agda's record type to de�ne them. Agda's record
data-type can be thought of a generalisation of the Σ type, as the type of each
�eld can depend on the types of the previous �elds in the record.

record Monoid : Set1 where
�eld

carrier : Set
≈ : carrier → carrier → Set
• : carrier → carrier → carrier
ǫ : carrier
isMonoid : IsMonoid _≈_ _•_ ǫ

A Monoid in Agda is a record that contains the �ve �elds given in its de�nition
above. The carrier �eld de�nes the underlying Set or data type over which we would
like to de�ne our monoid. The _≈_ �eld must de�ne an equivalence relation over
the carrier set. The _•_ �eld de�nes the binary operation of the monoid, which
was denoted by mappend in the Haskell implementation, and the ǫ �eld de�nes the
identity element for the given binary operation which corresponds to the mempty
element of the Haskell implementation. The last �eld, isMonoid, corresponds to a

137

data-type that encodes the monoid laws using the given equivalence relationship.
We can look at this in more detail by giving its de�nition as another record type.

record IsMonoid {A} (_≈_ : A → A → Set)
(_•_ : A → A → A)

(ǫ : A) : Set where
�eld

re� : ∀ {x} → x ≈ x
sym : ∀ { i j} → i ≈ j → j ≈ i
trans : ∀ { i j k} → i ≈ j → j ≈ k → i ≈ k
assoc : ∀ x y z → ((x • y) • z) ≈ (x • (y • z))
•-pres-≈ : ∀ {x y u v} → x ≈ y→ u ≈ v→ x • u ≈ y • v
identity : (∀ {x} → (ǫ • x) ≈ x) × (∀ {x} → (x • ǫ) ≈ x)

The �rst three �elds prove that the given relation is indeed an equivalence
relation. re� is a proof that ≈ is re�exive, sym is a proof that ≈ is symmetric,
and trans is a proof that ≈ is transitive. The next two �elds prove that the carrier
set, along with the • operation form a semi-group. That is, that • is associative,
and that • preserves the given equivalence relationship. The �nal �eld proves that
the given element ǫ is indeed a right- and left-identity to the given • operation.
In fact, Agda's standard library splits the laws into data-types that prove these
sub structures (The IsEquivalence and IsSemigroup data-types respectively). The
following section (section 8.4) goes on to look at a reimplementation of our toy
language of reversible circuits written in Agda, which uses two instances of a
monoid as we have de�ned. We shall now look at how we can also de�ne monads
in Agda in a similar way as we have de�ned monoids above.

The standard library of Agda currently only contains an implementation of
what it calls raw monads. Raw monads are an implementation of monads that
don't contain proofs of the monad laws. It would be possible to de�ne a type of
monad in Agda that encodes the proofs of the monad laws, although in this thesis
I shall just be using the raw monads as de�ned in the standard library. The raw

138

monad actually makes use of an underlying indexed raw monad, that is indexed by
the unit type, which carries no extra information. It useful to give the de�nition
of a raw indexed monad here.

A record type is once again used for the de�nition of a raw indexed monad.

record RawIMonad { I : Set} (M : I → I → Set → Set) : Set1 where
�eld
return : ∀ { i A} → A → M i i A
�= : ∀ { i j k A B} → M i j A → (A → M j k B) → M i k B

The return and _�=_ operations are exactly indexed versions of the operators
we used in Haskell. Thinking of monads in terms of their abstract behaviour, the
indices can be thought of as an index at the beginning of the monadic behaviour,
and the index at the end of the monadic behaviour. As such, the return operator
doesn't e�ect the index, and the _�=_ operator can only bind together two
monadic constructs whose indices match appropriately. We shall actually be using
this form of indexed monad later in the de�nition of QIO, whereby the indices will
relate to the set of qubits in a quantum computation. For now, we shall look at
the speci�c instance of a raw indexed monad that relates to a raw monad as we
have been using in Haskell. As mentioned previously, this form of raw monad is
simply a raw indexed monad whose indices are the unit type (⊤).

RawMonad : (Set → Set) → Set1
RawMonad M = RawIMonad {⊤} (_ → M)

To �nish o� this section on monads, I shall give the implementation of a simple
Maybemonad de�ned in Agda. TheMaybe data-type must �rst be de�ned, exactly
as in the Haskell implementation.

data Maybe (A : Set) : Set where
Nothing : Maybe A
Just : (a : A) → Maybe A

139

To give the de�nition of Maybe as a monad, we must de�ne the bind operator,
which we can then use in the de�nition of monadMaybe.

bindMaybe : ∀ {A B} → Maybe A → (A → Maybe B) → Maybe B
bindMaybe Nothing f = Nothing
bindMaybe (Just a) f = f a
monadMaybe : RawMonad Maybe
monadMaybe = record {return = \a → Just a

;_�=_ = bindMaybe
}

8.4 Reversible Computation in Agda

We can now start to look at how formally veri�ed proofs can be useful in design-
ing reversible computations in Agda. The next chapter will look at how these
techniques are used in de�ning a new version of the Quantum IO Monad in Agda.
Reversible computation requires that for every function we de�ne, we can also
de�ne the inverse of that function. This means that a reversible computation can
be thought of as a pair of functions along with proofs that these functions are
inverses of one another. We can use Agda's record type to de�ne a reversible
computation as such.

record Reversible (A B : Set) : Set where
�eld
f : A → B
f-1 : B → A
p : ∀ {x : A} → f-1 (f x) ≡ x
p-1 : ∀ {x : B} → f (f-1 x) ≡ x

We can now go about de�ning some instances of reversible computations that
ful�l this Reversible data-type. For example, the simplest instance would be of the

140

not operation acting on a single Boolean value.

not' : Bool → Bool
not' true = false
not' false = true

We can de�ne the not operation as a reversible computation by de�ning a member
of the Reversible data-type in which not is its own inverse along with the relevant
proof.

notnot : ∀ {x : Bool} → not' (not' x) ≡ x
notnot {true} = re�
notnot {false} = re�
¬ : Reversible Bool Bool
¬ = record {f = not'

; f-1 = not'
; p = notnot
; p-1 = notnot
}

Another operation we could de�ne is the To�oli gate using the if construct.

if_then_else_ : ∀ {a : Set} → Bool → a → a → a
if true then a else = a
if false then else a = a

The To�oli gate can be thought of as an if statement, acting on three Boolean
inputs.

to�oli' : Bool × Bool × Bool → Bool × Bool × Bool
to�oli' (a, b, c) = if (a ∧ b) then (a, b, not' c)

else (a, b, c)

141

We know again that the To�oli gate is self inverse, so we can de�ne the To�oli
gate as a reversible computation by creating a member of the Reversible record
type.

tt : ∀ {x : Bool × Bool × Bool} → to�oli' (to�oli' x) ≡ x
tt {true, true, true} = re�
tt {true, true, false} = re�
tt {true, false, z} = re�
tt {false, y, z} = re�
to�oli : Reversible (Bool × Bool × Bool) (Bool × Bool × Bool)
to�oli = record {f = to�oli'

; f-1 = to�oli'
; p = tt
; p-1 = tt
}

We can now de�ne the and function as an irreversible function embedded into this
reversible To�oli computation. The projection function for the 3rd element of a
(non-dependent) 3-tuple is used.

proj3 : {A : Set} → A × A × A → A
proj3 (a, b, c) = c
and : Bool → Bool → Bool
a and b = proj3 ((Reversible.f to�oli) (a, b, false))

It's also possible to go as far as to prove that this "reversible" and operation is
equivalent to the standard ∧ function de�ned in the standard library.

proof : ∀ {a b : Bool} → (a ∧ b) ≡ (a and b)
proof {true} {true} = re�
proof {true} {false} = re�
proof {false} {b} = re�

142

To �nish o� this section on reversible computation we shall revisit the toy
language we de�ned earlier in Haskell, and use the Reversible structure we have
just given to re-implement the language in Agda as a formally veri�ed reversible
language.

We de�ne the data-type Gate in a very similar manner as before, although now,
to help with the veri�cation process, we are able to index our gates by the number
of bits they act upon. In fact, we can think of this as de�ning families of gates,
whereby an arbitrary number of wires can be run in parallel below the gate.

data Gate : N → Set where
Empty : ∀ {n} → Gate n
X : ∀ {n} → Gate (one + n) → Gate (one + n)
Control : ∀ {n} → Gate n → Gate (one + n) → Gate (one + n)
DWire : ∀ {n} → Gate n → Gate (one + n) → Gate (one + n)

The Empty constructor is a family of gates over any arbitrary number of bits.
The X gate requires at least one bit to work upon, and the Control and DWire
constructs require at least one more bit than the number of bits in their sub gates.
We still have an extra Gate argument on the end of all but the Empty construct
that de�nes that only gates over the same number of bits can be joined in sequence.
This sequencing is again formalised by a monoidal structure.

In order to de�ne a monoidal structure over gates, we must �rst de�ne all the
functions and proofs that are required in the de�nition of a monoid. We already
know that our carrier set is to be the Gate data type, and that the ǫ element is the
Empty constructor. We can also use the equality type as our equivalence relation
(_≡_ is de�ned as an equivalence relation in the standard library), but we must
go on to de�ne the • operation along with all the relevant proofs before we can
actually give the monoidal de�nition for our gates.

The • operation corresponds to the sequencing of gates, and is given as the
following gate• function. This function is almost identical to the de�nition given
in the Haskell implementation.

143

gate• : ∀ {n} → Gate n → Gate n → Gate n
gate• Empty g = g
gate• (X g) g' = X (gate• g g')
gate• (Control c g) g' = Control c (gate• g g')
gate• (DWire d g) g' = DWire d (gate• g g')

The next step is to prove that this gate• function, along with the equality type
(_≡_) form a semi-group (we use the instance of IsEquivalence for _≡_ as given
in the standard library). The �rst proof we must construct, is that the given gate•
function is associative. This is achieved by using the congruence relation over each
of the Gate constructors.

gateAssoc : ∀ {n} → (x y z : Gate n) →
gate• (gate• x y) z ≡ gate• x (gate• y z)

gateAssoc Empty y z = re�
gateAssoc (X y) y' z = cong X (gateAssoc y y' z)
gateAssoc (Control y y') y0 z = cong (Control y) (gateAssoc y' y0 z)
gateAssoc (DWire y y') y0 z = cong (DWire y) (gateAssoc y' y0 z)

We must also prove that the gate• function preserves the equivalence relation,
which can be achieved by using congruence over each of the arguments to gate•.

gate•≈ : ∀ {n} → {x y u v : Gate n} → (x ≡ y) → (u ≡ v)
→ gate• x u ≡ gate• y v

gate•≈ {n} {x} {y} {u} {v} p p' = trans (cong (gate• x) p')
(cong (\y' → gate• y' v) p)

We can now build our proof of a semi-group using the de�nitions given above.

gateIsSemigroup : ∀ {n} → IsSemigroup _≡_ (gate• {n})
gateIsSemigroup {n} = record { isEquivalence = isEquivalence

; assoc = gateAssoc

144

; •-pres-≈ = gate•≈
}

To extend this proof to a proof that the given operations form a monoid over
the Gate data-type, we must now show that the Empty constructor is both a left-
and right-identity to the gate• function. The left-identity proof is trivial due to
the de�nition of the gate• function, and we can again use the congruence relation
over each of the Gate constructors to give that Empty is a right-identity to the
gate• function.

gateID : ∀ {n} → (x : Gate n) → gate• x Empty ≡ x
gateID Empty = re�
gateID (X y) = cong X (gateID y)
gateID (Control y y') = cong (Control y) (gateID y')
gateID (DWire y y') = cong (DWire y) (gateID y')

Putting all these proofs together, we come up with the following proof of the
monoidal structure.

gateIsMonoid : ∀ {n} → IsMonoid _≡_ (gate• {n}) Empty
gateIsMonoid {n} = record { isSemigroup = gateIsSemigroup

; identity = (\x → re�), gateID
}

With the proofs constructed we are able to de�ne the monoid.

monoidGate : ∀ {n} → Monoid
monoidGate {n} = record {carrier = Gate n

;_≈_ = _≡_
;_•_ = gate•
; ǫ = Empty
; isMonoid = gateIsMonoid
}

145

To give us easier access to the monoidal operations of the Gate structure, we
are able to open monoidGate in the same way as we import and open modules from
the standard library. This gives us direct access to all the �elds in monoidGate
(E.g. _•_ and ǫ).

open module mG {n} = Monoid (monoidGate {n})

We continue in a very similar way to give a semantics for our language in terms
of the primitive operations, and the monoidal operations to sequence them.

x : ∀ {n} → Gate (one + n)
x = X ǫ
control : ∀ {n} → Gate (one + n) → Gate (two + n)
control g = Control g ǫ
dwire : ∀ {n} → Gate (one + n) → Gate (two + n)
dwire g = DWire g ǫ

We could also give the reverse operation here that works on the syntactic level,
but as we are going to embed our evaluator into the Reversible structure de�ned
above, any evaluated circuit will have a corresponding inverse semantics anyway.
We can now give the same examples as we did in the Haskell version, the only
di�erence being that we have to state the size of the gates in their types.

t◦�◦li : ∀ {n} → Gate (three + n)
t◦�◦li = control (control x)
control' : ∀ {n} → Gate (one + n) → Gate (two + n)
control' g = x • control g • x
controlXX : ∀ {n} → Gate (three + n)
controlXX = control x • control (dwire x)

Instead of de�ning a new Circuit data-type to represent our computations in
terms of functions, this is where we use the Reversible structure from above. This

146

means that we must now de�ne the Reversible data-type as a monoidal structure,
so that we can lift the monoidal structure of our Gate data-type during evalua-
tion. The most complicated step of this process is in de�ning the functions that
combine the proofs of the two Reversible structures which are to be joined using
the monoidal _•_ operation.

The proofs are given by transitivity of the underlying p (and p-1) proofs of
the given Reversible structures, although we have to inform the system to evaluate
these proofs over the corresponding intermediate states.

combineP : {a : Set} → {a' : a} →
(r : Reversible a a) → (r' : Reversible a a) →
Reversible.f-1 r

(Reversible.f-1 r'
(Reversible.f r'

(Reversible.f r a'))) ≡ a'
combineP { } {a'} r r' with Reversible.p r {a'}
| cong (Reversible.f-1 r)

((Reversible.p r') {(Reversible.f r) a'})
...| a | b = trans b a
combinePR : {a : Set} → {a' : a} →

(r : Reversible a a) → (r' : Reversible a a) →
Reversible.f r'

(Reversible.f r
(Reversible.f-1 r

(Reversible.f-1 r' a'))) ≡ a'
combinePR { } {a'} r r' with Reversible.p-1 r' {a'}
| cong (Reversible.f r')

((Reversible.p-1 r) {(Reversible.f-1 r') a'})
...| a | b = trans b a

Composition (_•_) of Reversible structures can now be given by the functional

147

composition of the underlying f (and f-1) functions, along with the combined proofs
as de�ned above.

reversible• : ∀ {a} → Reversible a a → Reversible a a → Reversible a a
reversible• r r' = record
{f = \a' → (Reversible.f r') ((Reversible.f r) a')
; f-1 = \a' → (Reversible.f-1 r) ((Reversible.f-1 r') a')
; p = combineP r r'
; p-1 = combinePR r r'
}

The identity element (ǫ) corresponds to a reversible structure whose functions
are the identity function (acting on the underlying type a), and the proofs are
simply given by re�exivity.

reversibleǫ : ∀ {a} → Reversible a a
reversibleǫ = record {f = \x → x

; f-1 = \x → x
; p = re�
; p-1 = re�
}

In order to de�ne a monoidal structure we also need some form of equivalence
relation between members of the Reversible data-type. This can be achieved by
de�ning a record type that contains proofs that the underlying f and f-1 functions
of the two Reversible structures are equivalent using the normal _≡_ type. This is
su�cient (as we shall see) and we don't need to provide proofs that the underlying
proofs are equivalent (which is di�cult as by de�nition they have di�erent types).

record _≡R_ {a : Set} (r r' : Reversible a a) : Set where
�eld

f : Reversible.f r ≡ Reversible.f r'
f-1 : Reversible.f-1 r ≡ Reversible.f-1 r'

148

To show that this relation operation (_≡R_) is an equivalence relation we
give proofs of re�exivity, transitivity, and symmetry. In essence, these proofs are
lifting the underlying proofs of the _≡_ equivalence type.

≡RIsEquivalence : ∀ {a} → IsEquivalence (_≡R_ {a})
≡RIsEquivalence = record
{re� = λ {x'} →

record {f = re�
; f-1 = re�
}

; trans = λ { i j k} → \p p' →
record {f = trans (_≡R_.f p) (_≡R_.f p')

; f-1 = trans (_≡R_.f-1 p) (_≡R_.f-1 p')
}

; sym = λ { i j} → \p →
record {f = sym (_≡R_.f p)

; f-1 = sym (_≡R_.f-1 p)
}

}

We must go on to build up the proofs that are required in order to de�ne the
Reversible monoid, and as such must give proofs that the composition function
we have de�ned is associative (with respect to the equivalence relation _≡R_),
and also that the composition operator (_•_) preserves equivalence. Firstly, the
associativity proof is given.

reversibleAssoc : ∀ {a} → (x y z : Reversible a a)
→ reversible• (reversible• x y) z ≡R reversible• x (reversible• y z)

reversibleAssoc x y z = record {f = re�
; f-1 = re�
}

149

The proof that _•_ preserves our equivalence relation is just a congruence
proof over the underlying functions (f and f-1) of the given Reversible structures.

reversible•≈ : ∀ {a} → {x y u v : Reversible a a} → (x ≡R y)
→ (u ≡R v) → reversible• x u ≡R reversible• y v

reversible•≈ {a} {x} {y} {u} {v} xy uv
= record {f = trans (cong (\x' a' →

Reversible.f u (x' a')) (_≡R_.f xy))
(cong (\x' a' →

x' (Reversible.f y a')) (_≡R_.f uv))
; f-1 = trans (cong (\x' a' →

Reversible.f-1 x (x' a')) (_≡R_.f-1 uv))
(cong (\x' a' →

x' (Reversible.f-1 v a')) (_≡R_.f-1 xy))
}

These proofs can now be used in de�ning that the Reversible structure, along
with the given composition and equivalence, form a semi-group.

reversibleIsSemigroup : ∀ {a} → IsSemigroup (_≡R_ {a}) (reversible•)
reversibleIsSemigroup = record { isEquivalence = ≡RIsEquivalence

; assoc = reversibleAssoc
; •-pres-≈ = reversible•≈
}

The last proofs required to show that we have a monoidal structure, are proofs
that the identity element reversibleǫ is indeed a left and right identity to the com-
position function.

reversibleLID : ∀ {a} → (x : Reversible a a)
→ reversible• reversibleǫ x ≡R x

reversibleLID x = record {f = re�

150

; f-1 = re�
}

reversibleRID : ∀ {a} → (x : Reversible a a)
→ reversible• x reversibleǫ ≡R x

reversibleRID x = record {f = re�
; f-1 = re�
}

We can put all the previous proofs together to give our proof that the Reversible
structure, along with the given composition, equivalence and identity element form
a monoid.

reversibleIsMonoid : ∀ {a} → IsMonoid (_≡R_ {a}) reversible• reversibleǫ
reversibleIsMonoid = record { isSemigroup = reversibleIsSemigroup

; identity = reversibleLID,
reversibleRID

}

With all the necessary functions and proofs in place, we are able to de�ne the
monoid.

monoidReversible : ∀ {a} → Monoid
monoidReversible {a} = record {carrier = Reversible a a

;_≈_ = _≡R_
;_•_ = reversible•
; ǫ = reversibleǫ
; isMonoid = reversibleIsMonoid
}

To prevent name clashes, instead of opening the record like we did for the
monoidGate instance, we shall give functions that act as an interface to the required
elements.

151

ǫǫ : ∀ {a} → Reversible a a
ǫǫ = Monoid.ǫ monoidReversible
•• : ∀ {a} → Reversible a a → Reversible a a → Reversible a a
•• = Monoid._•_ monoidReversible

We can now think of our evaluated circuits (over n bits) as members of the
Reversible data-structure acting between vectors of Booleans of length n. As the
Reversible data-structure is a record type, it is useful to �rst de�ne the evaluation
functions for each individual gate, and then look at the proofs that we must
provide for each gate. Firstly, the evaluation of a single X gate will just negate
the �rst element of the argument vector. The type of the X gate ensures that the
argument vector to the evaluation function will always have at least one element,
and as such we don't need to worry about an empty argument vector.

evalX : ∀ {n} → Vec Bool (one + n) → Vec Bool (one + n)
evalX (x :: xs) = (not' x) :: xs

The evaluation of a Control gate will use a recursive call to the main evaluation
function to extract the corresponding behaviour of its sub-gate structure. As such,
the evaluation function for a single Control gate will be given the corresponding
function to run over the tail of the argument vector if the head element of this
vector is true.

evalC : ∀ {n} → (Vec Bool n → Vec Bool n)
→ Vec Bool (one + n) → Vec Bool (one + n)

evalC g (x :: xs) = x :: (if x then g xs else xs)

The evaluation of a single DWire gate is very similar to the evaluation of a
single Control gate, although in this instance, the function corresponding to the
sub-gate structure is always evaluated.

evalD : ∀ {n} → (Vec Bool n → Vec Bool n)
→ Vec Bool (one + n) → Vec Bool (one + n)

evalD g (x :: xs) = x :: (g xs)

152

As X is its own inverse, we only have to provide one proof that the evalua-
tion of an X gate is indeed reversible (although we do have to use it twice when
constructing the main evaluation function).

evalXP : ∀ {n} → ∀ {xs : Vec Bool (one + n)} → evalX (evalX xs) ≡ xs
evalXP {n} {true :: xs} = re�
evalXP {n} {false :: xs} = re�

Because of the recursive nature of the evaluation of both the Control and DWire
gates, we must tell Agda that the proofs of the reversibility of these evaluation
functions require a form of mutual recursion with the main evaluation function.
This is done in Agda by putting all the mutually recursive functions in a mutual
block. Within such a mutual block, we shall give the de�nition of the main
evaluation function (reversibleCircuit) �rst, and then give the remaining proofs.

The main evaluation function (reversibleCircuit) pattern matches over the Gate
argument to give the �rst Gate structure (X, Control, or DWire). The monoidal
structure de�ned for the Reversible data-type is used to recursively evaluate the rest
of the Gate structure. Other than this, the evaluation function creates a member
of the Reversible type by calling the evaluation functions for each structure, along
with their relevant proofs.

mutual
reversibleCircuit : ∀ {n} → Gate n →

Reversible (Vec Bool n) (Vec Bool n)
reversibleCircuit Empty = ǫǫ

reversibleCircuit (X g') = record
{f = evalX
; f-1 = evalX
; p = evalXP
; p-1 = evalXP
} •• reversibleCircuit g'

153

reversibleCircuit (Control g g') = record
{f = evalC (Reversible.f (reversibleCircuit g))
; f-1 = evalC (Reversible.f-1 (reversibleCircuit g))
; p = evalCP g
; p-1 = evalCPR g
} •• reversibleCircuit g'

reversibleCircuit (DWire g g') = record
{f = evalD (Reversible.f (reversibleCircuit g))
; f-1 = evalD (Reversible.f-1 (reversibleCircuit g))
; p = evalDP g
; p-1 = evalDPR g
} •• reversibleCircuit g'

The proof required for a single Control gate (evalCP) is a simple re�exivity
proof in the case that the head of the argument vector is false, and in the case
that the head of the argument vector is true, we can use a congruence of the proof
of the underlying sub-gate. The inverse proof (evalCPR) just uses the inverse proof
of the underlying sub-gate.

evalCP : ∀ {n} → {xs : Vec Bool (one + n)} → (g : Gate n) →
evalC (Reversible.f-1

(reversibleCircuit g))
(evalC (Reversible.f

(reversibleCircuit g)) xs) ≡ xs
evalCP {n} {true :: xs} g
with Reversible.p (reversibleCircuit g) {xs}

...| p = cong (_::_ true) p
evalCP {n} {false :: xs} g = re�
evalCPR : ∀ {n} → {xs : Vec Bool (one + n)} → (g : Gate n) →

evalC (Reversible.f

154

(reversibleCircuit g))
(evalC (Reversible.f-1

(reversibleCircuit g)) xs) ≡ xs
evalCPR {n} {true :: xs} g
with Reversible.p-1 (reversibleCircuit g) {xs}

...| p = cong (_::_ true) p
evalCPR {n} {false :: xs} g = re�

The proofs for a single DWire gate don't depend on the head of the argument
vector, so can just be given as a congruence of the underlying proofs from their
sub-gate.

evalDP : ∀ {n} → {xs : Vec Bool (one + n)} → (g : Gate n) →
evalD (Reversible.f-1

(reversibleCircuit g))
(evalD (Reversible.f

(reversibleCircuit g)) xs) ≡ xs
evalDP {n} {x :: xs} g
with Reversible.p (reversibleCircuit g) {xs}

...| p = cong (_::_ x) p
evalDPR : ∀ {n} → {xs : Vec Bool (one + n)} → (g : Gate n) →

evalD (Reversible.f
(reversibleCircuit g))

(evalD (Reversible.f-1

(reversibleCircuit g)) xs) ≡ xs
evalDPR {n} {x :: xs} g
with Reversible.p-1 (reversibleCircuit g) {xs}

...| p = cong (_::_ x) p

The last thing we give here is a run function that uses the evaluator to gen-
erate the reversible computation from a circuit, and evaluates the running of the

155

computation (or more speci�cally the computation in its forward direction) over
the given vector of Booleans. This run function can again be used to embed the
& function into the t◦�◦li circuit.

run : ∀ {n} → Gate n → Vec Bool n → Vec Bool n
run g xs = Reversible.f (reversibleCircuit g) xs
& : Bool → Bool → Bool
a & b = lookup (suc (suc zero)) (run t◦�◦li (a :: b :: false :: []))

156

Chapter 9

The Quantum IO Monad in Agda

We have previously introduced the idea of the Quantum IO Monad, which intro-

duces a monadic structure to explicitly deal with the effects inherent in quantum

computations. The choice of Haskell as the parent language followed mainly from

its built-in support for monads, but also more generally because pure functional

programming languages are in a unique position because of the way that any sort

of effects have to be dealt with explicitly. Indeed, it is the effects inherent in

quantum computation that lead to some of the most interesting unclassical prop-

erties, and making these effects explicit would be impossible in a paradigm in

which effects form an implicit part of computation. The Quantum IO Monad in

Haskell is only a first approximation to a language with a built-in monadic struc-

ture capable of explicitly dealing with these effects, and gives a way of looking

more at how such a language might be defined. The final chapter on the Haskell

implementation (7) discusses some of the restrictions that arise. Keeping those in

mind, it becomes necessary for such a language to be able to ensure the unitarity

of operations that can be defined. We have restrictions on the values of types that

can be used in certain situations, such as the restriction that the qubits used in a

control structure cannot also be used in the branches of the controlled operations.

This type of dependency between types and values is exactly the type of problem

that can be overcome using a dependent type system. In moving to Agda as a

157

parent language, we are able to keep the pure aspects of functional programming

that were the initial inspiration behind a monadic structure for QIO, but also

introduce a dependent type system, that gives us the stronger control over types

and values that we require to fully model the unitary operations we’d like to im-

plement. From the work introduced in this thesis, it becomes apparent that to

implement a language such as QIO, it is really necessary that we work in a pure

setting, so we can model effects explicitly, but also that we work within a depen-

dent type system, so we can have strict control over restricting the values of types

that can be used with-in the sub-unitary structures, such as control branches and

ancilliary qubits. In this instance, Agda is the natural choice of parent language

for QIO because its close relation to the syntax of Haskell leaves us with a new

implementation of QIO which has a very similar syntax to the previous Haskell

implementation.

9.1 Introduction

This chapter introduces work which goes towards a reimplementation of the Quan-

tum IO Monad in the dependently typed language Agda. The approach started

with an implementation of the classical subset of QIO in Agda, which is introduced

in the next section. The following Chapter (10) then goes on to describe how this

approach could be extended to the full set of quantum operations available in the

original Haskell implementation of QIO.

One of the problems that is encountered is that there is currently no library

that defines the real numbers in Agda. Much work is on-going into the study of

real numbers in dependently typed languages (such as [GN02]), but as it is only

certain properties of the reals, and complex numbers that we require, we are able

to use floating point numbers in this implementation as an approximation to the

reals, and can postulate certain properties of the real numbers that might not

actually hold for the floating point interpretation.

158

The properties we need are simply the properties that arise from the fact that
the real numbers form a �eld. We introduce these properties as postulated types,
and then extend them to proofs that the complex numbers also form a �eld. These
�eld axioms can then be used in the proofs inherent in our unitary operators.

This chapter looks more at the properties of the unitary operators in Agda,
and how we use the stronger type-system to ensure their unitarity. The full imple-
mentation of QIO is also covered, but only a few examples of QIO computations
are given. The source can again be found on-line [Gre09].

9.2 Classical QIO in Agda

To start looking at a reimplementation of QIO in Agda, it is �rst useful to look
at a reimplementation of the classical subset of QIO. We �rst de�ne a type that
represents the semantics of a unitary operator (USem), and then de�ne construc-
tor functions for members of this type that correspond to the syntax of unitary
operators. It is in designing the types of these syntax functions that we can start
to look at using the stronger type system to ensure we no longer need the seman-
tic side conditions from the Haskell implementation. Once we have de�ned the
unitary operators, we can then give a de�nition for the other parts of the QIO
monad, and implement the classical run function for simulating these new QIO
computations.

Although we are only implementing the classical subset of QIO here, we shall
try and keep with the original QIO terminology where possible. As before, compu-
tations are going to act on qubits, so we must de�ne what a qubit in QIO is. In the
Haskell implementation, we simply had individual qubits as an integer reference
to the qubit they represented, but it is more useful to think of a QIO computation
as indexed by the number of qubits it uses. Hence we use a type for qubits that
corresponds to a set indexed by n, the number of qubits available. This is pretty
much a type-synonym of the Fin data-type that we saw in the introduction to

159

dependent types in Agda.

data Qbit : N → Set where
qzero : {n : N} → Qbit (suc n)
qsuc : {n : N} (i : Qbit n)→ Qbit (suc n)

The individual qubits can still be thought of as references to the available qubits,
but having the set of qubits indexed by the number of qubits gives us more infor-
mation to work with.

9.2.1 A formally veri�ed semantics for unitary operations

As we are only working with the classical subset of QIO, we are able to de�ne
the semantics of a unitary as a function acting on vectors of Booleans of length n,
where n is still the number of qubits.

record USem (n : N) : Set where
�eld

f : Vec Bool n → Vec Bool n
f-1 : Vec Bool n → Vec Bool n
p : ∀ {x : Vec Bool n} → f-1 (f x) ≡ x
p-1 : ∀ {x : Vec Bool n} → f (f-1 x) ≡ x

Compare this code to the Reversible data-type we introduced earlier and you will
see that it is very similar. Every operation we wish to provide must also provide
a semantics that is a member of the USem data-type, thus providing a semantics
for unitaries that is formally veri�ed to be unitary (or in this case reversible).

Before we look at the operations we wish to de�ne, we can already declare
these semantics to be a monoid. The construction of the monoid is very similar
to the construction of the monoidReversible given in the previous chapter. The
�rst thing we can de�ne is an element of USem that corresponds to the identity
element of the monoid.

160

mempty : ∀ {n} → USem n
mempty = record {f = \x → x

; f-1 = \x → x
; p = re�
; p-1 = re�
}

In de�ning the operation that corresponds to the monoidal composition func-
tion, we must again think about how we can combine the proofs of the two underly-
ing USem structures. This can be achieved by transitivity of the underlying proofs,
although we must again instantiate these proofs with respect to the intermediary
results of the computation.

combineP : ∀ {n} → {xs : Vec Bool n} → (u u' : USem n)
→ USem.f-1 u (USem.f-1 u' (USem.f u' (USem.f u xs))) ≡ xs

combineP {n} {xs} u u' with USem.p u {xs}
| cong (USem.f-1 u) ((USem.p u') {(USem.f u) xs})

...| a | b = trans b a
combinePR : ∀ {n} → {xs : Vec Bool n} → (u u' : USem n)
→ USem.f u' (USem.f u (USem.f-1 u (USem.f-1 u' xs))) ≡ xs

combinePR {n} {xs} u u' with USem.p?1 u' {xs}
| cong (USem.f u') ((USem.p-1 u) {(USem.f-1 u') xs})

...| a | b = trans b a

These proofs can now be used in de�ning the mappend operation, with the com-
bined functions corresponding to the functional composition of the corresponding
functions from the underlying USem structures.

mappend : ∀ {n} → (USem n) → (USem n) → (USem n)
mappend u u' = record {f = \xs → (USem.f u') ((USem.f u) xs)

; f-1 = \xs → (USem.f-1 u) ((USem.f-1 u') xs)

161

; p = combineP u u'
; p-1 = combinePR u u'
}

Before we can de�ne a monoidal structure using the mempty and mappend
operations from above, we must de�ne an equivalence relation for the USem struc-
tures. We have a similar problem as in the Reversible example, and as such de�ne
an equivalence relation in the form of a record containing �elds that are proofs
that the underlying f and f-1 functions are equivalent.

record _U_ {n : N} (r r' : USem n) : Set where
�eld

p : USem.f r ≡ USem.f r'
p-1 : USem.f-1 r ≡ USem.f-1 r'

We are now able to start building up all the proof terms that are required in
de�ning our monoidal structure. The �rst proof term we need to show is that
the relation we have de�ned above is indeed an equivalence relation, and this
can be achieved by lifting the underlying re�, trans, and sym proofs for the main
equivalence type (_≡_).

isEquivalenceU : ∀ {n} → IsEquivalence (_U_ {n})
isEquivalenceU =

record {re� = record {p = re�
; p-1 = re�
}

; trans = \p p' →
record {p = trans (_U_.p p) (_U_.p p')

; p-1 = trans (_U_.p-1 p) (_U_.p-1 p')
}

; sym = \p → record {p = sym (_U_.p p)
; p-1 = sym (_U_.p-1 p)

162

}

}

We must also show that the mappend operation is associative with respect to
the equivalence relation we have de�ned (_U_)

assocMappend : ∀ {n} → (x y z : USem n)
→ mappend (mappend x y) z U mappend x (mappend y z)

assocMappend x y z = record {p = re�
; p-1 = re�
}

and that our mappend operation preserves the equivalence relation.

mappend-pres-U : ∀ {n} → {x y u v : USem n} → x U y → u U v
→ mappend x u U mappend y v

mappend-pres-U {n} {x} {y} {u} {v} xy uv =

record {p = trans (cong (\u' x' → (USem.f u (u' x')))
(_U_.p xy))

(cong (\u' x' → u' (USem.f y x'))
(_U_.p uv))

; p-1 = trans (cong (\u' x' → (USem.f-1 x (u' x')))
(_U_.p-1 uv))

(cong (\u' x' → u' (USem.f-1 v x'))
(_U_.p-1 xy))

}

Putting the proofs so far de�ned together, we can construct a proof that the
USem datatype, along with the mappend operation, and the _U_ equivalence
relation, form a semi-group.

isSemiGroupUSem : ∀ {n} → IsSemigroup (_U_ {n}) mappend
isSemiGroupUSem = record { isEquivalence = isEquivalenceU

163

; assoc = assocMappend
; •-pres-≈ = mappend-pres-U
}

In order to prove that we have a full monoidal structure, it is now necessary
to show that the mempty element we have de�ned is indeed both a left and right
identity to the mappend operation.

usemLID : ∀ {n} → (x : USem n) → mappend mempty x U x
usemLID x = record {p = re�

; p-1 = re�
}

usemRID : ∀ {n} → (x : USem n) → mappend x mempty U x
usemRID x = record {p = re�

; p-1 = re�
}

Putting all the proofs together, we end up with a proof that the USem datatype,
along with mappend, mempty, and the equivalence relation _U_, form a monoid

isMonoidUSem : ∀ {n} → IsMonoid (_U_ {n}) mappend mempty
isMonoidUSem = record { isSemigroup = isSemiGroupUSem

; identity = usemLID, usemRID
}

and we are able to de�ne it as such.

monoidUSem : ∀ {n} → Monoid
monoidUSem {n} = record {carrier = USem n

;_≈_ = _U_
;_•_ = mappend
; ǫ = mempty

164

; isMonoid = isMonoidUSem
}

As the inverse of each unitary is inherent in the structure of the USem datatype,
we can create the revere (or inverse) of a unitary, trivially, by swapping the two
functions and the two proofs within the USem structure.

reverse : ∀ {n} → USem n → USem n
reverse u = record {f = USem.f-1 u

; f-1 = USem.f u
; p = USem.p-1 u
; p-1 = USem.p u
}

9.2.2 Unitaries in QIO Agda

Now that we have a suitable representation for the semantics of our unitaries, we
can start de�ning the unitary operations that we would like to model inQIO. These
operations will correspond to the operations that formed the classical subset of the
operations we had in the Haskell implementation of QIO. Namely, we shall de�ne
operations corresponding to the swap, cond, rot, and ulet operations, although in
this case we shall restrict the rotations available to just the negation operation,
which we shall refer to as x (after its relation to the Pauli X rotation in the
quantum realm).

As our semantics are de�ned in terms of functions acting on vectors of Booleans,
and the corresponding proofs of unitarity, we are able to construct members of
the USem type by �rst de�ning the necessary functions and proofs, and putting
them together in a USem structure. Firstly, we can implement the swap unitary in
terms of two standard vector functions. That is, the function insert : ∀ {A n} →
A → Vec A n → (Qbit n) → Vec A n which inserts the given element into the

165

given vector at the given (qubit) index, and the _!!_ : ∀ {A n} → Vec A n →
(Qbit n) → A lookup function, that returns the element in the given vector at the
given (qubit) index. The de�nition of Qbit ensures that the given index is always
valid with respect to the vector.

swapQ : ∀ {n : N} → (Qbit n) → (Qbit n)
→ Vec Bool n → Vec Bool n

swapQ qzero qzero (x :: xs) = x :: xs
swapQ qzero (qsuc i) (x :: xs) =

insert x (((x :: xs) !! (qsuc i)) :: xs) (qsuc i)
swapQ (qsuc i) qzero (x :: xs) =

insert x (((x :: xs) !! (qsuc i)) :: xs) (qsuc i)
swapQ (qsuc i) (qsuc i') (x :: xs) = x :: (swapQ i i' xs)

We know that the swap operation is self inverse, so the only proof we need to
construct is that this is the case. To do this, we are able to make use of two sub-
proofs. The �rst (pinsert) is a proof that the element in a vector at the position
we have inserted it, is indeed the element that we inserted.

pinsert : ∀ {n} → (x : Bool) → (xs : Vec Bool n) → (i : Qbit n)
→ (insert x xs i !! i) ≡ x

pinsert x [] ()

pinsert true (x :: xs) qzero = re�
pinsert false (x :: xs) qzero = re�
pinsert x (x' :: xs) (qsuc i) = pinsert x xs i

The second is a proof that reinserting an element into the same index of a
vector from where it came, leaves us back with the original vector.

pinsert' : ∀ {n} → (x : Bool) → (xs : Vec Bool n) → (i : Qbit n)
→ (insert (xs !! i) (insert x xs i) i) ≡ xs

pinsert' x [] ()

166

pinsert' x (x' :: xs) qzero = re�
pinsert' x (x' :: xs) (qsuc i) = cong (_::_ x') (pinsert' x xs i)

Now, the overall proof that swapQ is self inverse can be constructed using the
:≡: constructor that takes a proof that the head of two vectors are equivalent,
and that the tail of two vectors are equivalent, and returns a proof that the overall
vectors are equivalent.

pswapQ : ∀ {n : N} → (y y' : Qbit n) → (x : Vec Bool n)
→ swapQ y y' (swapQ y y' x) ≡ x

pswapQ () () []

pswapQ qzero qzero (x :: xs) = re�
pswapQ qzero (qsuc i) (x :: xs) = (pinsert x xs i) :≡: (pinsert' x xs i)
pswapQ (qsuc i) qzero (x :: xs) = (pinsert x xs i) :≡: (pinsert' x xs i)
pswapQ (qsuc i) (qsuc i') (x :: xs) = cong (_::_ x) (pswapQ i i' xs)

Putting all the pieces together, we can de�ne the Swap constructor. Note that
the type of the given Swap constructor is almost identical to the type of its Haskell
counter-part, and that the monoidal structure for the USem datatype is used to
append the following u onto the end of the given USem structure.

Swap : ∀ {n : N} → (Qbit n) → (Qbit n) → USem n → USem n
Swap x y u = record {f = \xs → swapQ x y xs

; f-1 = \xs → swapQ x y xs
; p = λ {xs} → pswapQ x y xs
; p-1 = λ {xs} → pswapQ x y xs
} • u

The de�nition for the X member of USem is also unspectacular, and as such
is omitted from this thesis. The full code can be found online [Gre09]. It is only
when we start to look at the behaviour of the cond and ulet constructors that we
can start to use the extra power of dependent types in our de�nitions so as to

167

overcome the side-conditions that were necessary in the Haskell implementation.
If we look at the two side-conditions for these constructors, we can actually notice
a big similarity. In the case of a conditional, we need that the control qubit is
left in a state separable from the qubits in the conditional unitaries that it is
controlling, and in the case of the ulet structure, we require that the auxiliary
qubit is left in a state separable from the other qubits in the unitary in which
it is used. In the classical case, this corresponds to the control/ulet qubit being
left in the state in which it started, after the application of the sub-unitary. In
Agda, this side condition can be stated in terms of a proof that this is indeed the
case, and as such, a QIO program must provide an element of this proof type, or
it won't compile. We can de�ne the Sep datatype in terms of a record containing
two proofs. The �rst (s) is exactly the proof described above, and the second (s-1)
is the same proof but for the inverse of the given USem.

record Sep {n : N} (i : Qbit n) (u : USem n) : Set where
�eld

s : ∀ {xs} → ((USem.f u xs) !! i ≡ xs !! i)
s-1 : ∀ {xs} → ((USem.f-1 u xs) !! i ≡ xs !! i)

We shall see, that in de�ning the cond and ulet structures, we need exactly
the proofs provided by the Sep datatype to give overall proofs of their unitarity.
Because of this extra requirement, the structures we're going to de�ne to represent
the cond and ulet operations will have di�erent types than their Haskell counter-
parts. Firstly, the type of our new conditional operation will be Cond : ∀ {n :

N} → (i : Qbit n) → (Bool → (Σ (USem n) (\u → Sep {n} i u))) →
USem n → USem n. That is, that each branch of the conditional must contain
the unitary for that branch along with a member of the Sep datatype that provides
a proof that the control qubit is separable from the application of that unitary.
The behaviour of a conditional unitary is given exactly by the Boolean function,
so the semantics of Cond will simply use the semantics of the unitary given when
the Boolean function is applied to the value of the control qubit.

168

condQ : ∀ {n} → (i : Qbit n) →
(Bool → (Σ (USem n) (\u → Sep {n} i u)))
→ Vec Bool n → Vec Bool n

condQ i fb xs = USem.f (proj1 (fb (xs !! i))) xs

The inverse of the condQ function is given by condQR, and just extracts the
underlying inverse function (f-1) instead. As many of the proofs for condQR are
very similar to the proofs for condQ they shall be omitted too. The proof that
condQR is the inverse of condQ uses a helper function (condQPhelper) that is
basically a congruence proof.

condQPhelper : ∀ {n} → {s t : USem n} → {xs : Vec Bool n}
→ (s ≡ t) → USem.f-1 t (USem.f s xs) ≡ USem.f-1 s (USem.f s xs)

condQPhelper re� = re�

The overall proof uses the underlying proof (USem.p) of its sub unitary using
the proof given in the Sep data-type to lift this to a proof of the whole cond
operation.

condQP : ∀ {n} → {xs : Vec Bool n} → (i : Qbit n)
→ (fb : (Bool → (Σ (USem n) (\u → Sep {n} i u))))
→ condQR i fb (condQ i fb xs) ≡ xs

condQP {n} {xs} i fb = trans
(condQPhelper (cong (\b → proj1 (fb b))

(sym (Sep.s (proj2 (fb (xs !! i)))))))
(USem.p (proj1 (fb (xs !! i))) {xs})

We can now construct the overall de�nition for our Cond structure, again using
the monoidal structure of USem to append the following u onto the end of the main
conditional de�nition.

Cond : ∀ {n : N} → (i : Qbit n)
→ (Bool → (Σ (USem n) (\u → Sep {n} i u)))

169

→ USem n → USem n
Cond {n} q fb u = record {f = \xs → condQ q fb xs

; f-1 = \xs → condQR q fb xs
; p = λ {xs} → condQP {n} {xs} q fb
; p-1 = λ {xs} → condQRP {n} {xs} q fb
} • u

The de�nition of the Ulet member of USem is remarkably similar to the con-
ditional, with the type Ulet : ∀ {n} → (b : Bool) → ((i : (Qbit (suc n))) →
Σ (USem (suc n)) (\u → Sep {suc n} i u)) → USem n → USem n. With
all the structures now de�ned, we are able to give a syntax for our unitaries that
corresponds very well to the original syntax given in the Haskell implementation.

ux : ∀ {n : N} → (Qbit n) → USem n
ux qn = X qn ǫ
uswap : ∀ {n : N} → (Qbit n) → (Qbit n) → USem n
uswap q1 q2 = Swap q1 q2 ǫ
ucond : ∀ {n : N} → (i : Qbit n)
→ (Bool → (Σ (USem n) (\u → Sep i u))) → USem n

ucond q fb = Cond q fb ǫ
ulet : ∀ {n : N} → (b : Bool) → ((i : (Qbit (suc n)))
→ (Σ (USem (suc n)) (\u → Sep {suc n} i u))) → USem n

ulet b fq = Ulet b fq ǫ

With our syntax de�ned, we are now able to write unitary operators. As a
simple example we can create the quantum if, that only performs the given unitary
if the control qubit is true. In the case that the control qubit is false then the
monoidal identity of USem is used. As such, we can require that the user provides
a separability proof for the given unitary, from the control qubit, and provide a
simple proof that any control qubit is separable from the monoidal identity (ǫ).

170

qif : ∀ {n : N} → (i : Qbit n) → (u : USem n) → Sep {n} i u
→ USem n

qif {n} i u s = ucond i (\b → if b then u, s
else ǫ,
record {s = re�

; s-1 = re�
})

An example use of the qif operation is to create the cnot gate. We can't provide
a concrete proof that the cnot gate is unitary for any control/target qubits, as it
isn't unitary when these two qubits coincide, as such we are able to give a proof
that the cnot gate is unitary if we have a proof that the control qubit isn't the same
qubit as the target qubit. The _ 6≡_ proof is actually a a synonym for the type
≡ → ⊥, where ⊥ is an uninhabited type. The de�nition also makes use of
the function lower6≡ : ∀ {n} → {x y : Qbit n} → (qsuc x 6≡ qsuc y) → (x 6≡ y).

cnotP : ∀ {n} → (xs : Vec Bool n) → (cq q : Qbit n) → (cq 6≡ q)
→ negate q xs !! cq ≡ xs !! cq

cnotP [] () () p
cnotP (x :: xs) qzero qzero p with p re�
...| ()

cnotP (x :: xs) qzero (qsuc i) p = re�
cnotP (x :: xs) (qsuc i) qzero p = re�
cnotP (x :: xs) (qsuc i) (qsuc i') p = cnotP xs i i' (lower6≡ p)

Using this proof, we are able to de�ne the cnot gate, whereby the user must
give a proof that the control qubit and the target qubit are distinct from one
another.

cnot : ∀ {n : N} → (cq q : Qbit n) → (cq 6≡ q) → USem n
cnot {n} cq q p = qif cq (ux q) (

record {s = λ {xs} → cnotP xs cq q p

171

; s-1 = λ {xs} → cnotP xs cq q p
})

Another example unitary operation we can give is that of the To�oli gate. In
this instance, we are able to create separability proofs as long as the target qubit
is distinct from both of the control qubits.

to�oliP : ∀ {n : N} → (xs : Vec Bool n) → (q1 q2 q3 : Qbit n)
→ (q1 6≡ q3) → (cnp : q2 6≡ q3)
→ USem.f (cnot q2 q3 cnp) xs !! q1 ≡ xs !! q1

to�oliP xs q1 q2 q3 p cnp with xs !! q2
...| true = cnotP xs q1 q3 p
...| false = re�
to�oliPR : ∀ {n : N} → (xs : Vec Bool n) → (q1 q2 q3 : Qbit n)
→ (q1 6≡ q3) → (cnp : q2 6≡ q3)
→ USem.f-1 (cnot q2 q3 cnp) xs !! q1 ≡ xs !! q1

to�oliPR xs q1 q2 q3 p cnp with xs !! q2
...| true = cnotP xs q1 q3 p
...| false = re�

The To�oli gate can now be given as a unitary, whereby the user must provide
proofs that the target qubit is distinct from both of the control qubits.

to�oli : ∀ {n : N} → (q1 q2 q3 : Qbit n)
→ (q1 6≡ q3) → (q2 6≡ q3) → USem n

to�oli {n} q1 q2 q3 p cnp =

qif q1 (cnot q2 q3 cnp) (

record {s = λ {xs} → to�oliP xs q1 q2 q3 p cnp
; s-1 = λ {xs} → to�oliPR xs q1 q2 q3 p cnp
})

Now that we have de�ned the new unitary operations for QIO in Agda, we
would like to actually be able to use them in computations. The following section

172

looks at how we can de�ne the monadic operations of QIO as an indexed monad
in Agda, and use it in de�ning formally veri�ed QIO computations.

9.2.3 QIO as an indexed monad in Agda

De�ning QIO in Agda is now a case of de�ning the monadic structures that enable
us to initialise qubits, apply unitaries to these qubits, and �nally measure qubits.
It is useful in Agda think of this in terms of an indexed monad. Our indices will
relate to the number of qubits a monadic computation requires when it starts,
and the number of qubits that are in the system when it has �nished. In fact, as
our measurements don't remove qubits from the system (they only collapse their
state into a base state), we know that the only operation we have that changes
the number of qubits in the system is when we initialise a new qubit. Keeping
this in mind, we are able to de�ne the constructors of QIO.

data QIO (A : Set) : N → N → Set where
QReturn : ∀ {n : N} → A

→ QIO A n n
MkQbit : ∀ {n m : N} → Bool

→ (Qbit (suc n) → (QIO A (suc n) m))

→ QIO A n m
ApplyU : ∀ {n m : N} → USem n → QIO A n m

→ QIO A n m
MeasQbit : ∀ {n m : N} → (Qbit n) → (Bool → QIO A n m)

→ QIO A n m

Having the computations indexed by the number of qubits they require in
scope, and the number of qubits that are still in scope afterwards enables the
monadic behaviour to only bind suitably indexedQIO computations. This indexing
also allows us to inform our simulation functions that they require a computation
starting with zero qubits in scope, as any computation that requires a certain

173

initialisation of qubits will have to de�ne this initialisation when we want to run
it. The bind operation of the monad (QIObind) can be de�ned as expected.

QIObind : ∀ {n m l : N} → ∀ {A B : Set} → QIO A n m
→ (A → QIO B m l) → QIO B n l

QIObind (QReturn a) f = f a
QIObind (MkQbit b g) f = MkQbit b (\x → QIObind (g x) f)
QIObind (ApplyU u q) f = ApplyU u (QIObind q f)
QIObind (MeasQbit x g) f = MeasQbit x (\b → QIObind (g b) f)

and can be used in the de�nition of QIO as a raw indexed monad.

monadQIO : RawIMonad {N} (\m n A → QIO A m n)
monadQIO = record {return = QReturn

;_�=_ = QIObind
}

Now we have our monadic constructors, we are able to de�ne the syntax we
wish to use for creating QIO computations in Agda.

mkQbit : ∀ {n : N} → Bool → QIO (Qbit (suc n)) n (suc n)
mkQbit b = MkQbit b QReturn
applyU : ∀ {n : N} → USem n → QIO ⊤ n n
applyU u = ApplyU u (QReturn tt)
measQbit : ∀ {n : N} → Qbit n → QIO Bool n n
measQbit x = MeasQbit x QReturn

As it stands however, the indexing of the monad gives us some complications
when it comes to computations acting over multiple qubits. For example, if we
wanted to de�ne a computation that uses the to�oli gate unitary to create the
logical and function, we would like to write the code as follows.

174

and : Bool → Bool → QIO Bool zero 3
x and y = mkQbit x >>= \qx →

mkQbit y >>= \qy →
mkQbit false >>= \qf →
applyU (to�oli qx qy qf

qx 6≡qf qy 6≡qf) >>

measQbit qf

However, this code will not type check as the type of each of the three qubits
is di�erent. That is, qx : Qbit 1, qy : Qbit 2, and qz : Qbit 3. What we do know,
is that elements of Qbit n can be lifted to elements of Qbit (suc n), so we are able
to de�ne the lift function to do this.

lift : ∀ {n : N} → Qbit n → Qbit (suc n)
lift qzero = qzero
lift (qsuc q) = qsuc (lift q)

This lift function must now be used explicitly in our code, giving rise to the
de�nition of _and_ as follows.

and : Bool → Bool → QIO Bool zero 3
x and y = mkQbit x >>= \qx →

mkQbit y >>= \qy →
mkQbit false >>= \qf →
applyU (to�oli (lift (lift qx)) (lift qy) qf

qx 6≡qf qy 6≡qf) >>

measQbit qf

Although this gives rise to uglier code for our QIO programs, there are tech-
niques that could be used to overcome this. A similar problem has been described
in [Swi08] chapter 6. In the sections on weakening, the author looks into ways
that the system can automatically weaken the necessary references (equating to

175

the lifting of our qubits), although the full technique described for doing so can-
not be applied in this instance as the qubits used in a unitary aren't explicitly
referenced by the monadic constructors of QIO.

Now that we are able to de�ne QIO computations, we would also like to be
able to run them. The following section looks at the evaluation of classical QIO
computations in Agda.

9.2.4 Evaluating classical QIO computations in Agda

The evaluation of QIO computations as de�ned above relies on the underlying
USem structure of our unitary operators. Indeed, when evaluating the application
of a unitary (ApplyU), we shall just be using the functions embedded in the USem
structure applied to the current state of the system, in this case a suitably ini-
tialised vector of Boolean values. The MkQbit constructor will just append a new
boolean value to the end of the current vector, and the MeasQbit constructor will
return the value in the vector that is indexed by the qubit being measured.

runQIO : ∀ {n m : N} → ∀ {A : Set} → QIO A n m
→ Vec Bool n → A

runQIO (QReturn a) v = a
runQIO {n} {m} (MkQbit b fq) v = runQIO (fq (newQbit n)) (v ::r b)
runQIO (ApplyU u q) v = runQIO q ((USem.f u) v)
runQIO (MeasQbit q fb) v = runQIO (fb (v !! q)) v

The overall runC function for the running of classical QIO computations in Agda
will just call the runQIO function with an empty vector. The classical nature of
the computations again means that the return type doesn't need to be monadic,
and indeed a QIO computation of type A is able to return a value of type A upon
evaluation.

runC : ∀ {m : N} → ∀ {A : Set} → QIO A zero m → A
runC q = runQIO q []

176

We �nish this section by giving a simple proof that running the_and_ function
as de�ned above is equivalent to the _∧_ function acting on Boolean values.

andproof : ∀ {a b : Bool} → a ∧ b ≡ runC (a and b)
andproof {true} {true} = re�
andproof {true} {false} = re�
andproof {false} {b} = re�

We now move on to look at how this Agda implementation of the classical
subset of QIO can be extended into a fully quantum version.

177

Chapter 10

Quantum QIO in Agda

In order to extend our classical version of QIO in Agda, we need to look at how

we are able to model a quantum state classically. This is because the seman-

tics of our QIO computations needs to be given in terms of functions acting on

these quantum states. The first problem we come across when looking at how

we modelled quantum state in our Haskell implementation is that we used an im-

plementation of the complex numbers in order to assign each base state within

an overall quantum state a corresponding amplitude. In fact, it is easy to model

the complex numbers in terms of their real and imaginary parts, so all we really

need is an implementation of the real numbers. In Agda, there is currently no

implementation of the real numbers, and re-implementing something such as the

constructive reals defined in Coq ([GN02]), into Agda, is beyond the scope of this

research. Fortunately, we are able to simulate real numbers in Agda by telling it

to compile a postulated type of reals into the underlying floating point represen-

tation used in Haskell. This, however, leads to a lack of ability in reasoning about

computations that use real numbers as we know nothing about their values until

after compilation. Instead, we must postulate facts that we know hold for the real

numbers, and use these in creating our proofs. The following section looks at how

we are able to simulate complex numbers in Agda by postulating the real numbers

and the properties given to us by knowing that the real numbers form a field.

178

10.1 Simulating the Complex number �eld in Agda

As previously mentioned, we don't have an implementation of the real numbers
available to us in Agda. We can however de�ne the type R as an uninhabited type
that we inform Agda to compile down to the underlying Haskell implementation
of �oating point numbers.

data R : Set where

{-# COMPILED_DATA R Float #-}

As Agda will still treat R as an uninhabited type it would seem that we would be
unable to de�ne anything useful over it. However, Agda allows us to add postu-
lates to our programs. We can also add compiled types for postulated functions,
allowing some of our postulated types and functions to be approximated at run-
time. In fact, the only information we need about the real numbers is that they
form a �eld, and so it is the �eld axioms that we must postulate for R. Firstly,
we must postulate the elements and operations that a �eld contains.

postulate
zeroR : R

oneR : R

+R : R → R → R

-R : R → R

×R : R → R → R

÷R : R → R

zeroR will be the additive identity, and will compile to the �oating point num-
ber 0.0. oneR will be the multiplicative identity, and will compile to the �oating
point number 1.0. Addition (+R) and multiplication (×R) are assumed to have
closure with-in R, which is inherent in their types, and shall compile to + and *
respectively. The additive inverse is given by -R and compiles to the operation

179

-R x = 0.0 − x. Similarly, the multiplicative inverse is de�ned by ÷R and com-
piles to the operation ÷R x = 1.0/x. We can now go on to postulate all the �eld
properties of R.

postulate
assoc+R : ∀ {a b c : R} → a +R (b +R c) ≡ (a +R b) +R c
assoc×R : ∀ {a b c : R} → a ×R (b ×R c) ≡ (a ×R b) ×R c
com+R : ∀ {a b : R} → a +R b ≡ b +R a
com×R : ∀ {a b : R} → a ×R b ≡ b ×R a
zero+R : ∀ {a : R} → a +R zeroR ≡ a
one×R : ∀ {a : R} → a ×R oneR ≡ a
inv+-R : ∀ {a : R} → a +R (-R a) ≡ zeroR

inv×÷R : ∀ {a : R} → a ×R (÷R a) ≡ oneR
dist×+R : ∀ {a b c : R} → a ×R (b +R c) ≡ (a ×R b) +R (a ×R c)

In order, these postulates correspond to the �eld properties

• Associativity of addition

• Associativity of multiplication

• Commutativity of addition

• Commutativity of multiplication

• zeroR is the additive identity

• oneR is the multiplicative identity

• -R is the additive inverse

• ÷R is the multiplicative inverse

• Multiplication distributes over addition

We can now use any of these de�nitions in our Agda programs, and although the
current implementation, upon compilation, still only approximates the reals (and

180

hence complex numbers), it should only be necessary to change the de�nition of
the reals and de�ne these axioms using that de�nition to give us a fully formally
veri�ed implementation of QIO.

We would now like to use the de�nitions given above in de�ning the �eld of
complex numbers, C. The de�nition of C itself is exactly as would be expected.

data C : Set where
:+ : R → R → C

and the functions representing addition and multiplication are de�ned in the nor-
mal way.

+C : C → C → C

(a :+ b) +C (a' :+ b') = (a +R a') :+ (b +R b')
×C : C → C → C

(a :+ b) ×C (a' :+ b') = ((a ×R a') +R (-R (b ×R b')))
:+ ((a ×R b') +R (b ×R a'))

As the reals are a subset of the complex numbers, we can de�ne a function
R→C that lifts elements of R into elements of C with no imaginary part. We can
then use this function in de�ning the additive and multiplicative identities of C

(zeroC and oneC respectively).

R→C : R → C

R→C a = a :+ zeroR

zeroC : C

zeroC = R→C zeroR

oneC : C

oneC = R→C oneR

Continuing on in a similar manner, we are able to de�ne the additive inverse,
and multiplicative inverse in terms of their R counter-parts. We can also de�ne

181

all the necessary �eld axioms for C using the underlying axioms from R. Most
of these de�nitions are omitted from here for brevity, but can be found in the
on-line code [Gre09]. As a taster, we shall give the proof that multiplication is
commutative. The type of such a proof is given by

com×C : ∀ {a b : C} → a ×C b ≡ b ×C a

but Agda is able to reduce this so that we have the following goal.

((a ×R b) +R -R (ai ×R bi)) :+ ((a ×R bi) +R (ai ×R b))
≡

((b ×R a) +R -R (bi ×R ai)) :+ ((b ×R ai) +R (bi ×R a))

To make the de�nition of this proof easier, it is useful to have proof constructor
functions that distribute equivalence over the :+ constructor of C, and also over
the addition operator _+R_ (or indeed any binary operator acting on R).

≡:+≡ : ∀ {a a' b b' : R} → (a ≡ b) → (a' ≡ b')
→ (a :+ a') ≡ (b :+ b')

re� ≡:+≡ re� = re�
≡ [] ≡ : {A : Set} → ∀ {a b c d : A} → (a ≡ c)

→ (_op_ : A → A → A) → (b ≡ d)
→ (a op b) ≡ (c op d)

re� ≡ [] ≡ re� = re�

The proof of the commutativity of ×C can now be given in terms of these
functions, and the �eld axioms of R that corresponds to the commutativity of ×R

and +R (com×R and com+R respectively).

com×C : ∀ {a b : C} → a ×C b ≡ b ×C a
com×C {a :+ ai} {b :+ bi} = (com×R ≡ [_+R_] ≡ cong -R com×R)

≡:+≡ (trans com+R (

(com×R ≡ [_+R_] ≡ com×R)))

182

Now that we have a type of complex numbers that we can use in Agda, we
can go on to look at the new implementation of our unitaries. Such a de�nition
of the complex numbers does lead to some problems later, as proof terms must be
constructed explicitly for an entire calculation. We shall discuss the draw backs
of this approach later.

10.2 A formally veri�ed semantics for unitary op-

erations

In the quantum realm we must model the semantics of our unitary operators in
terms of functions acting on our model of quantum state. For the purposes of this
implementation, we can think of a quantum state as a list of base states, which are
each given a corresponding complex amplitude. A base state in this formulation
can just be a vector of Booleans, along with its amplitude.

data Base (n : N) : Set where
◦ : Vec Bool n → C → Base n

The semantics of a QIO computation can now be given in terms of functions
that take a base state, and return a list of base states. When running our com-
putations, we shall simply map such a function over the entire state. However,
this formalism brings a few problems when we wish to add proofs to the semantics
that ensure that we do indeed have unitary operations. For example, we wish that
applying a unitary operator to a single base state, and then mapping the inverse of
the unitary operator over the list of base states returned by the original function,
to leave us in the base state in which we started. This is already going to have a
type mismatch, so we must de�ne what it means for a list of base states to be equal
to a given single base state. The easiest solution would be to check that the list is
only a singleton list containing a single base state that is equivalent to the given
base state, but in practice this approach isn't realistic as it involves de�ning a

183

map function that is able to remove states that have a zeroC amplitude. With our
current de�nition of C we are unable to construct such a function as the system
can't evaluate equivalences on C, and the user must provide proofs constructed
from the �eld properties. As such, a better de�nition of what it means for a base
state to be equal to a list of base states is to ensure that every base state with a
non-zero amplitude in the list will sum up to give the overall base state with which
we are comparing it. To do this, we still need a way of removing base states from
an overall state that have a zero amplitude, and can postulate an equivalence that
de�nes this when given a proof that the amplitude does equal zeroC.

postulate
removeZero : ∀ {n} → {x : Vec Bool n} → {c : C}

→ {xs : List (Base n)}
→ (c ≡ zeroC) → (x ◦ c) :: xs ≡ xs

De�ning the equivalence between a list of base states and a single base state
can now be de�ned using a record type.

record _≡S_ {n : N} (xs : List (Base n)) (x : Base n) : Set where
�eld

xs' : List (Base n)
p : xs ≡ xs'
bs : map (extractVecBool) xs'
≡ map (extractVecBool) (repeat x (length xs'))

cs : foldr _+C_ zeroC (map extractC xs')
≡ extractC x

Having the xs' �eld means that we are able to give a list of states which is
equivalent to the list of states we are given. This is ensured by having to give a
proof of such an equivalence (p). Normally, the only proof term we can use is the
re� construct, and Agda can infer from this that xs' must be the list we are given.
However, having to de�ne xs' explicitly, means that we are able to provide a proof

184

in terms of the removeZero equivalence function from above, and only have to give
the following proofs for such a normalised state. The bs �eld is a proof that the
classical state stored in every base state is equivalent to the classical state from the
given base state. Finally, the cs �eld is a proof that the sum of all the amplitudes
in the list of base states is equivalent to the amplitude of the single base state. A
better implementation of the complex numbers would simplify this de�nition, as
we would be able to de�ne a �lter function that removes base states with a zero
amplitude automatically, instead of having to give proofs for such states explicitly.

Now that we have a de�nition for an equivalence between a single base state,
and a list of base states, we are able to de�ne the new USem structure that will
provide the functions and proofs as in the classical case.

record USem (n : N) : Set where
�eld

f : Base n → List (Base n)
f-1 : Base n → List (Base n)
p : {x : Base n} → (join (map f-1 (f x))) ≡S x
p-1 : {x : Base n} → (join (map f (f-1 x))) ≡S x

The four �elds in this new USem structure correspond exactly to the four �elds
in the classical USem structure, although now we are having to map the inverse
function over the result of the �rst function, and use the new equivalence we
de�ned above.

The USem structure can be de�ned as a monoid in a very similar manner to in
the classical version, and as such the de�nitions shall be omitted here. We go on
now to look at the extra structure that is associated with de�ning the unitaries
that we have in QIO in terms of this new semantics.

185

10.3 Unitaries in QIO Agda

The de�nition for many of our unitaries are similar to their classical counterparts
as we are able to just give a singleton list as the result of applying the functions
to a single base state. The only exception to this is in de�ning the new type of
rotations that we are allowed in the quantum version. Constructing the proofs for
this new semantic is also a little harder than for the classical case as we have to
look at the behaviour of the map function when we are de�ning our proofs. As
such we shall go over the rede�nition of the Swap gate in order to see the new
proofs that we have to de�ne.

The new de�nition of the Swap gate makes use of the underlying behaviour
that was de�ned for the swap gates in the classical version. That is, we have the
following functions:

swapQ' : ∀ {n} → (x y : Qbit n) → Vec Bool n → Vec Bool n
pswapQ' : ∀ {n} → (x y : Qbit n) → (xs : Vec Bool n)
→ swapQ' x y (swapQ' x y xs) ≡ xs

Indeed, the behaviour of the Swap gate that we wish to de�ne now is just these
functions lifted onto the list representation of quantum state. Firstly, the new
behaviour of the swap function just returns the singleton list containing the base
state that corresponds to swapping the qubits in the given argument base state.

swapQ : ∀ {n} → Qbit n → Qbit n → Base n → List (Base n)
swapQ q1 q2 (bs ◦ c) = [(swapQ' q1 q2 bs ◦ c)]

As Swap is self-inverse, we only require one proof. In this instance, we don't
need to, and indeed would be unable to remove any zero amplitude base states
before giving the proofs. As such we can give the xs' as the wild card pattern ,
and Agda is able to use the proof re� to automatically infer that xs' is indeed just
the input to the equivalence relation.

pswapQ : ∀ {n} → (x y : Qbit n) → (xs : Base n)

186

→ join (map (swapQ x y) (swapQ x y xs)) ≡S xs
pswapQ x y (y' ◦ y0) = record {xs' =

; p = re�
; bs = cong (\x → x :: [])

(pswapQ' x y y')
; cs = zero+C

}

The proof term bs uses the underlying pswapQ' function lifted over a singleton
list, and because of the behaviour of the foldr function we must give a proof that
zeroC is the additive identity as our cs proof term. With the de�nition of both
the swapQ function, and the relevant proof (pswapQ) we are able to give the full
member of the USem datatype for the Swap constructor.

Swap : ∀ {n : N} → (Qbit n) → (Qbit n) → USem n → USem n
Swap x y u = record {f = \xs → swapQ x y xs

; f-1 = \xs → swapQ x y xs
; p = λ {xs} → pswapQ x y xs
; p-1 = λ {xs} → pswapQ x y xs
} • u

Before we go on to look at the de�nition of rotations, it is useful to look
at the new de�nition of the Sep requirement. We can now think of a qubit as
being separable from a given unitary if for every base state in the quantum state
produced from running the unitary, the given qubit is in the same state as it
started, and that the sum of the amplitudes of all these states is equivalent to
the amplitude of the state in which it started. Indeed, this a very similar form of
equivalence as we used above, but now restricted to only having a single bit in the
classical state having to be equal.

record ≡Ss {n : N} (xs : List (Base n)) (x : Base n)
(q : Qbit n) : Set where

187

�eld
xs' : List (Base n)
p : xs ≡ xs'
bs : map (lookupQ q) xs'
≡ map (lookupQ q) (repeat x (length xs'))

cs : foldr _+C_ zeroC (map extractC xs')
≡ extractC x

record Sep {n : N} (i : Qbit n) (u : USem n) : Set where
�eld

s : ∀ {x} → ≡Ss (USem.f u x) x i
s-1 : ∀ {x} → ≡Ss (USem.f-1 u x) x i

10.3.1 Rotations

To de�ne a unitary that represents a rotation, we must be able to de�ne a function
that in essence maps a single base state to the two possible base states that such
a rotation can create, with their amplitudes updated accordingly. To ensure that
these rotations are indeed unitary, we can de�ne them such that they contain a
proof that when multiplied by their conjugate transpose we arrive at the identity
rotation. Having these proofs built into the rotations themselves means that we
are able to use them within the proofs required by the USem structure. We will
come back to the proofs that we require later.

Before looking at the proofs, we can de�ne a rotation in terms of a record type
containing 4 �elds that each represent one of the entries of the matrix representa-
tion of such a rotation.

record Rot : Set where
�eld

a : C

b : C

188

c : C

d : C

Using this representation we can already start to de�ne some of the standard
rotations we would like to use, although there is nothing to ensure that they are
unitary at this stage. An example that we shall use through-out the rest of this
section is that of the X rotation, which we shall also show is indeed a unitary
rotation.

x' : Rot
x' = record {a = zeroC

; b = oneC
; c = oneC
; d = zeroC
}

We are also able to de�ne some standard matrix operations acting on these
rotations, such as matrix multiplication,

⋆ : Rot → Rot → Rot
r1 ⋆ r2 = record {a = ((Rot.a r1) ×C (Rot.a r2))

+C ((Rot.b r1) ×C (Rot.c r2))
; b = ((Rot.a r1) ×C (Rot.b r2))

+C ((Rot.b r1) ×C (Rot.d r2))
; c = ((Rot.c r1) ×C (Rot.a r2))

+C ((Rot.d r1) ×C (Rot.c r2))
; d = ((Rot.c r1) ×C (Rot.b r2))

+C ((Rot.d r1) ×C (Rot.d r2))
}

and the conjugate transpose operation.

189

_* : Rot → Rot
r * = record {a = conjugate (Rot.a r)

; b = conjugate (Rot.c r)
; c = conjugate (Rot.b r)
; d = conjugate (Rot.d r)
}

Now we have our basic type for rotations, we want to think how we are able
to de�ne that they are unitary. The de�nition of unitary in this sense is that
multiplying a matrix by its conjugate transpose must equal the identity matrix.
As such, we can de�ne that an arbitrary rotation (a : Rot) is unitary if we can show
that a ⋆ (a *) is equal to the identity rotation (id' : Rot). To help with this process
it is useful to de�ne equivalence between rotations in terms of a record type that
contains a proof that each �eld of a rotation is equivalent to the corresponding
�eld in the other rotation.

record _≡R_ (r1 r2 : Rot) : Set where
�eld

a : Rot.a r1 ≡ Rot.a r2
b : Rot.b r1 ≡ Rot.b r2
c : Rot.c r1 ≡ Rot.c r2
d : Rot.d r1 ≡ Rot.d r2

With this equivalence, we are able to de�ne a datatype which encodes the
requirement for a rotation to be unitary

Unitary : (r : Rot) → Set
Unitary r = (r ⋆ (r *)) ≡R id'

and de�ne the Rotation datatype which contains a proof that the embedded rota-
tion is indeed unitary.

data Rotation : Set where
Rotate : (Σ Rot Unitary) → Rotation

190

We can now extend our example of the X rotation to give a formally veri�ed
unitary version. The proof xp : Unitary x' is quite large, so is omitted from here,
but is available on-line [Gre09]. The proofs we need to construct, in general, boil
down to using the �eld properties of C that we de�ned earlier. Using a better
implementation of C would mean that Agda was able to evaluate the proof terms
further, and we would be left with simpler and more concise proofs to construct.

x : Rotation
x = Rotate (x', xp)

We can now use these rotations in de�ning a member of the USem datatype
that applies a rotation to a given qubit. The de�nition of the function that applies
a rotation is given as follows:

rotate : ∀ {n} → (Qbit n) → Rotation
→ Base n → List (Base n)

rotate qzero
(Rotate (r, p))
((false :: xs) ◦ c)
= ((false :: xs)) ◦ (Rot.a r ×C c)

:: ((true :: xs)) ◦ (Rot.b r ×C c)
:: []

rotate qzero
(Rotate (r, p))
((true :: xs) ◦ c)
= (false :: xs) ◦ (Rot.c r ×C c)
:: (true :: xs) ◦ (Rot.d r ×C c)
:: []

rotate (qsuc i) r ((x :: xs) ◦ c) =

map (\xs' → x ::' xs') (rotate i r (xs ◦ c))

With the de�nition of this function using the _×C_ function to calculate

191

the amplitudes of the two base states in its output, and the use of the conjugate
transpose of a rotation as its inverse, the proofs that we require can be constructed
using the underlying unitarity proofs of the rotation. The proofs are left out here
as they are long constructions, but we can note that they must also make use
of the removeZero function given previously to remove base states with a zero
amplitude from the list of states calculated from mapping the inverse rotation to
the result of the �rst rotation. The full code, including these proofs, is available
on-line [Gre09].

URot : ∀ {n : N} → (Qbit n) → Rotation → USem n → USem n
URot {n} q r u = record {f = rotate q r

; f-1 = rotate q (r *')
; p = λ {xs} → rotateP q r xs
; p-1 = λ {xs} → rotatePR q r xs
} • u

We are now able to give all the unitary operations that we have de�ned, a
syntax which we can use when writing unitary operations for use in our QIO
computations. Firstly we use the same syntax as in the classical case for the
uswap, ucond, and ulet operations

uswap : ∀ {n} → (Qbit n) → (Qbit n) → USem n
uswap q1 q2 = Swap q1 q2 UReturn
ucond : ∀ {n} → (i : Qbit n) → (Bool → (Σ (USem n) (Sep i)))
→ USem n

ucond q fb = Cond q fb UReturn
ulet : ∀ {n} → Bool → ((i : (Qbit (suc n)))
→ Σ (USem (suc n)) (Sep i)) → USem n

ulet b fq = Ulet b fq UReturn

and we can now introduce a urot operations for de�ning rotations, along with some
standard rotations we are able to use.

192

urot : ∀ {n : N} → (Qbit n) → Rotation → USem n
urot qn r = URot qn r UReturn
uId : ∀ {n} → Qbit n → USem n
uId q = urot q id
uX : ∀ {n} → Qbit n → USem n
uX q = urot q x
uHad : ∀ {n} → Qbit n → USem n
uHad q = urot q had
uPhase : ∀ {n} → R → Qbit n → USem n
uPhase r q = urot q (phase r)

Now that we have de�ned our unitary operations, we are able to use them
with QIO computations. We go over the de�nition of the actual QIO monad in the
following section, and then look at how we are able to simulate the running of QIO
computations by compiling our programs so they are able to use the underlying
�oating point representation of R and C.

10.4 Evaluating quantum QIO computations using

Agda

The de�nition of the QIO monad is identical to the previous de�nition we have
given for the classical implementation of QIO in Agda. So in this section we shall
just introduce the new evaluation functions that can be used to simulate the run-
ning of a QIO computation. The main di�erence from the classical implementation
is that we must now map our new unitary operators over the quantum states we
have de�ned. The map function that we have been using in the proofs doesn't
combine base states that are equal as this is useful for the way we de�ne our proof
structures. However, when we come to actually wanting to run our programs, we
are more interested in having a normalised output, in the sense that equal base

193

states are combined by adding their amplitudes. For this purpose, we are able
to de�ne a new map function that keeps the state normalised by using a Boolean
equality function for the classical part of the base states. We omit the de�nition
of this new map' function as it is pretty standard and corresponds well to the
de�nition of the normalising vectors we used in the Haskell implementation. The
other di�erence is that the type returned by the evaluation function can no longer
be a pure value, and as such we shall return a list of the possible values from the
type embedded in the monad, paired with the current state that produced that
value.

runQIO : ∀ {n m A} → QIO A n m → List (Base n)
→ List (A × List (Base m))

runQIO (QReturn a) v = [a, v]

runQIO {n} {m} (MkQbit b fq) v = runQIO (fq (newQbit n))
(map' (\x → x ::r' b) v)

runQIO (ApplyU u q) v = runQIO q
(map' (USem.f u) v)

runQIO (MeasQbit q fb) v =

(runQIO (fb false)
(�lter (\b → ¬ (lookupQ q b)) v))

++ (runQIO (fb true)
(�lter (\b → (lookupQ q b)) v))

From this de�nition, we can see that applying a unitary uses the new map'
function, and that it is during measurements that the states can split and dif-
ferent values of the underlying type can occur. The evaluation of an entire QIO
computation can now be de�ned by running it with an initial state that contains
no elements.

run' : ∀ {n A} → QIO A zero n (Qbit n)
→ List (A × List (Base n))

run' q = runQIO q [[] ◦ oneC]

194

We would like the actual run function we de�ne to have the same behaviour as
the sim function that was de�ned in the Haskell version, so we need some way of
extracting the probabilities for each member of the embedded type (a : A) from
the state associated with that element. This is a simple task as it just involves
summing the absolute squares of the amplitudes left in that base state. We can
de�ne a sum function that achieves this task

sum : ∀ {n} → List (Base n) → R

sum [] = zeroR
sum (y ◦ y' :: xs) = [| y' |2] +R sum xs

and then use it in the de�nition of a function that combines all the probabilities,
along with their respective elements.

combine : ∀ {n : N} → ∀ {A : Set} → List (A × List (Base n))
→ List (A × R)

combine [] = []

combine ((a, []) :: xs) = combine xs
combine ((a, x :: xs) :: xs') =

((a, sum (x :: xs))) :: ((combine xs'))

The overall run function can now be de�ned:

run : ∀ {n : N} → ∀ {A : Set} → QIO A zero n (Qbit n)
→ List (A × R)

run q = combine (run' q)

As it stands, QIO programs written in Agda can be evaluated using the run
function given above. However, these evaluations within Agda will just give us very
large constructs that Agda has evaluated the QIO programs to, consisting of many
operations on the R datatype which it is unable to evaluate any further. If we want
to actually get a result from running our QIO computations, then we must use the
compiled version of QIO Agda that gives the programs a corresponding semantics

195

using the underlying �oating point representation of R that can be evaluated fully.
The on line code [Gre09], contains example programs written in QIO Agda that can
be compiled and run. These examples include an implementation of the creation of
a bell state, an implementation of quantum teleportation, and an implementation
of Deutsch's algorithm. Running the compiled version of these programs gives the
output as expected. For example, the output from compiling and running the QIO
computation that measures a bell state is as follows:

Qio.run measBell = (false , false):0.50000006 ,
(true , true):0.50000006

Even for such a simple construct, we can already see that the underlying
�oating point representation doesn't faithfully simulate the real numbers as the
probabilities add up to more than one.

10.5 Remarks on QIO in Agda

The implementation of the classical subset of QIO in Agda has given us an excellent
start towards developing a formally veri�ed version of QIO, in the sense that;
by having to de�ne proofs of unitarity we ensure that all the computations we
can de�ne are indeed realisable computations in the standard model of quantum
computation. Extending the classical version of QIO to a fully quantum version
has shown some major draw backs, mainly coming about due to the lack of an
implementation of the real numbers in the dependently-typed setting. The main
draw backs are in the size and complexity of the proof terms that we need to
provide, which would be a lot simpler if Agda could evaluate the real numbers
to a normal-form and not just have them de�ned by all the operations that are
used upon them. This problem also means that currently it is nearly impossible to
reason in general about the QIO computations we are able to de�ne, in the sense
of creating formally veri�ed proofs about the behaviour of quantum algorithms.
For example, we would like to be able to write a proof term that shows Deutsch's

196

algorithm acting on a function f is indeed equivalent to showing that the function
f is balanced. However, there are also lots of positive results that can be taken
from this implementation of QIO in Agda, as it shows that a dependently-typed
approach can give us a nice way of de�ning quantum computations that are veri�ed
to have the behaviour that they specify.

There is still further work that could be done on an implementation of QIO in
Agda, which would bene�t greatly from a better de�nition of the real numbers.
However, even without a new de�nition for the reals, there is still more work that
could be done. In the short term, developing these ideas using the implementation
of the classical subset of QIO is a better prospect, although any ideas shown in
the classical version should extend naturally to their quantum counterparts. The
�nal chapter goes on to give a brief comparison of the two implementations of QIO
that I have presented in this thesis.

197

Chapter 11

QIO and other Quantum

programming languages

11.1 Related Languages

In the introduction (Section 1.2.1), we introduced work that is related to the work

in this thesis. As well as talking about related work on categorical models, and

effectful programming in the functional setting; we also briefly mentioned a few

quantum programming languages that are closely related to QIO :

• [Sab03] gives a model of quantum computing in Haskell that is designed to

give programmers an intuitive approach to quantum computation

• [VAS06] looks at how quantum effects can be modelled in Haskell using the

idea of arrows.

• [AG05] and [Gra06] introduce the functional quantum programming lan-

guage QML. The denotational semantics of QML can be thought of in terms

of the arrows approach mentioned above.

This chapter aims to give a more in depth look at the three languages men-

tioned above, with direct comparisons to the QIO approach. In so doing, I hope

to give the reader a better understanding of where QIO fits within the realm of

198

functional quantum programming languages, as well as discuss the pros and cons

related with each approach.

11.2 Modelling quantum computation in Haskell

In [Sab03], the author goes over a model of quantum computation in Haskell.

Although not fully developed as a language, the model provides programmers

with an approach for developing quantum computations.

The approach starts by extending the idea of classical data types, to corre-

sponding quantum data types, whereby the values that a classical data type can

take form a basis for the quantum data type. A member of the quantum data type

then consists of assigning a complex amplitude to each of the base states (that

form a basis). The paper briefly mentions that this model can include certain

forms of infinite data type, but to extend the model so as to allow computations

on these quantum data types, we are restricted to finite (or enumerated) types.

A simple example of a quantum data type in this model is the quantum analogue

of Bool , which is denoted QV Bool , and elements can simply be defined by the

amplitudes α, β :: C which describe the quantum state α |False〉 + β |True〉.

The type QV Bool is simply a representation of a qubit, but any finite type can

be lifted to its quantum counterpart directly. This contrasts with QIO in which

at the lowest level, we only have qubits as a quantum counter part of Bool , and

any other quantum data type must be constructed from this (E.g. the underlying

structure of the quantum integer data type in QIO is a fixed-length list of qubits).

The interesting aspects of quantum computation only appear when the author

starts to look at the quantum analogue of pairs, remarking that there are two types

of pair that can be defined. Either (QV a,QV b), which is just an (unremarkable)

classical pair of quantum data types, or QV (a, b) which is a quantum pair, and

introduces the notion of entanglement. As an example, the author defines a Bell

state, (p1 ::QV (Bool ,Bool)) and notes that it cannot be described in terms of its

199

two sub components.

With the definition of quantum data types in place, it is then possible to start

thinking of operations on these data types. It is quite simple to define operations

on whole data types (E.g. not the sub components of a pair type for example) in

terms of a matrix like structure that defines the probabilities of each base state

being taken to a different base state (possibly of a different quantum type). The

author briefly mentions how pure functions on the classical data types can be

lifted to versions on the quantum data type, but leaves the side condition for the

programmer to ensure that the functions they lift to be of a reversible nature.

Measurements on whole quantum data types are also quite straight forward to

model, with a measurement collapsing the state into a single base state, or value

of the underlying classical data type, and in so doing, changing the amplitude

of all other base states to zero. This just models the probabilistic aspects of

measurement operations and the use of the IO monad is sufficient. This is the

natural choice in this instance, as it is possible to make use of IORef s so that

quantum values can only be accessed via a reference, and observations can update

the reference cell with a new value. Using the IO monad also follows from the

same reasoning as for why the run function of QIO embeds the results within the

IO monad.

It is when we wish to model computations, and measurements, on only sub

elements of a quantum data type that the given representation becomes less ele-

gant. With the model as it stands, quantum data types are only modelled as the

wave functions that describe the entire state of the quantum type. For example,

we have the quantum pairs as described previously, but have no way of accessing

a single element of that pair. A nice remark, is that this is akin to the principle of

wave/particle duality. The state is described by a wave function, but each element

of the pair is an individual particle, which we should be able to treat individually

in terms of applying operations to it, and measuring it. The effect of operations

to these individual particles may well have an overall effect on the wave function,

200

and hence the other particles with which it is entangled.

The paper goes on to describe a way in which to overcome this problem, using

what it calls Virtual Values. A virtual value is described as being a value which

although possibly embedded deep inside a structure and entangled with others can

be operated on individually. In order to use a virtual value, the user must provide

the entire data structure in which it is embedded, and an adaptor which is a pair

of functions that map from the entire structure to the structure in question, and

vice versa. The definition of these adaptor functions is shown to be regular, and

the author provides examples that give access to the separate particles within a

(possibly) entangled pair.

This is where the main contrast between the model presented here and QIO

lies. Computations in QIO are defined upon individual qubits, and the wave func-

tions describing the state are only simulated when running the computations. We

will see in a comparison example towards the end of this section, that the quan-

tum computations written in the model presented here incur a coding overhead in

which all the sub-structures that need to be operated on must be extracted from

the overall state that the computation uses.

Quantum computations written in this model end up defining effectful pro-

grams in Haskell, this is also different from the aim of the Quantum IO Monad.

In QIO , we are able to write quantum computations, and then embed them into

effectful Haskell programs if we wish to simulate the running of them. The aim

here was to present a model of quantum computation to functional programmers,

but the aim of QIO is to provide a syntax for defining quantum computations.

QIO uses a monadic structure to be explicit about the effects that occur in quan-

tum computation, but here, the IO monad is used so that the probabilistic aspects

of measurement can be modelled within Haskell.

The paper finishes off with a few examples of quantum computations writ-

ten using the model described. One of the examples presented is of Deutsch’s

algorithm, and it is nice to compare this with the implementation of Deutsch’s al-

201

gorithm presented in QIO . The following implementation of Deutsch’s algorithm

is lifted directly from [Sab03].

deutsch :: (Bool → Bool)→ IO ()

deutsch f = do inpr ← mkQR (qFalse &∗ qTrue)

let both = virtFromR inpr

top = virtFromV both ad pair1

bot = virtFromV both ad pair2

uf = cop f qnotop

in app1 hadamardop top

app1 hadamardop bot

app1 uf both

app1 hadamardop top

topV ← observeVV top

putStr (if topV then "Balanced" else "Constant")

The first line creates the entire quantum data structure over which the com-

putation will take place (inpr). In this case, it is defined as the tensor product

(&∗) of the two states |0〉 (qFalse) and |1〉 (qTrue). The first three let expressions

must then define the virtual values over which each stage of the computation can

take place. The first creates a virtual value that contains both qubits from the

overall state (both), the second creates a virtual value that contains the first qubit

from the pair just defined (top), and finally the third creates a virtual value that

contains the second qubit from the pair previously defined (bot). The final let

statement defines a controlled operation that applies a not operation to its second

argument, depending on the value of applying the function f to its first argument.

The rest of the code looks quite similar to the definition of Deutsch’s algorithm in

QIO given below. Hadamards are applied to the top and bottom qubits, the uni-

tary uf is applied to both qubits, and then the top qubit has another Hadamard

applied to it before being measured. The resultant Boolean value specifies exactly

if the input function was balanced.

202

deutsch :: (Bool → Bool)→ QIO Bool

deutsch f = do x ← qPlus

y ← qMinus

applyU (cond x (λb → if f b then unot y

else mempty))

applyU (uhad x)

measQ x

In QIO we define Deutsch’s algorithm as a quantum computation that returns a

Boolean value. We could embed the computation into an effectful Haskell compu-

tation by running it, and outputting the same message as in the definition above.

runDeutsch :: (Bool → Bool)→ IO ()

runDeutsch f = do result ← run (deutsch f)

putStr (if result then "Balanced" else "Constant")

The monadic do notation in someway makes the definitions look very similar,

with the main difference being that in QIO the qubits are distinct particles by

definition, and we don’t have to have explicit views of an overall state (the virtual

values) in order to operate on them. The QIO definition just defines an operation

on qubits, and it isn’t until the computation is run that an overall state is even

created. It is in this way that QIO is a language, giving a syntax for quantum

computations that is separate from the underlying model that we use to evaluate

the running of a computation.

The use of a monad in this model is to model the probabilistic nature of mea-

surements, and not to directly model the side-effects inherent with measurements

to the global state. Indeed, the monadic structure of QIO is quite the opposite,

and is defined to directly model the side-effects inherent with measurement, and

it is only upon simulation that different monadic structures are used (the two in-

stances of the PMonad for sim and run) to model the probabilistic nature of the

computations. Indeed, the model presented here struggles to combine measure-

ments in-line with quantum computations, such as is necessary to model quantum

203

teleportation. The model is adequate in the sense that any quantum computation

can be re-defined in terms of a computation in which all measurements are de-

ferred until the end, but this takes away the elegance of the quantum teleportation

protocol as it no longer models the sending of classical data from Alice to Bob.

11.3 Monads and Arrows

The work presented in [VAS06] introduces a model of quantum computation that

uses the idea of arrows from the functional programming paradigm, to model the

effects that can occur in the quantum realm. Arrows were first introduced as a

generalisation of monads [Hug00], and Haskell now provides a special syntax for

arrows, along with a preprocessor built into GHC.

The main differences between the arrows approach, and the monadic approach

of QIO is the semantics which they both use to represent quantum computations.

QIO is built upon the notion of unitary operations and measurements being dis-

tinctly different types of operations. With unitary operations being pure, but

measurements being effectful, as described by QIOs monadic structure. The ar-

rows approach doesn’t treat measurements and unitary operations as different

types of operations, as both can be defined in terms of superoperators. It is these

superoperators that form the arrows in the approach described.

The work is presented as a way of extending the previous model of quantum

computation given in Haskell (in section 11.2). In fact, the teleportation protocol

is presented as a motivating factor behind this, trying to define a model of quantum

computation in which measurements can be modelled nicely as intermediary parts

of a quantum computation. It is shown that a change in the semantic model is

necessary so that quantum states are modelled in terms of density matrices.

Previously, the global state of a quantum system was modelled in terms of a

pure state, that is, a single state that described the probabilities of a measurement

of a system. Or in other words, the probabilities of the system collapsing into each

204

of its base states upon measurement. Measurements were modelled by irreversible

operations on these states that collapsed the wave-function of the system. Density

matrices allow us to model the probability distribution of these so called pure

states, and give us a way of modelling the different outcomes that may occur after

a measurement. That is, a measurement collapses a pure state into another pure

state, with a certain probability. A density matrix allows us to model all the pure

states that can result from a measurement, along with their probabilities.

For example, pure states can be given as a density matrix by taking their outer

product (with themselves). The density matrix of the pure state |+〉 is given as:

|+〉 〈+| =




1√
2

1√
2


 [

1√
2
,

1√
2
] =




1

2

1

2

1

2

1

2




However, density matrices can also describe mixed states, such as the proba-

bility distribution of states after measuring the |+〉 state. The following density

matrix describes exactly the fact that measuring the |+〉 state leaves you either

in the |0〉 state, or the |1〉 state each with probability 1

2
. It is also simply (a

renormalisation of) the sum of the two pure states corresponding to |0〉 and |1〉.

Measure




1

2

1

2

1

2

1

2


 =




1

2
0

0 0


 +




0 0

0 1

2


 =




1

2
0

0 1

2




Operations that take a density matrix to another density matrix are known as

superoperators. It is quite simple to see that unitary operations acting on pure

states can be lifted to superoperators on density matrices, in a similar manner as

to pure states being lifted to density matrices. However, it also possible to model

measurement, and traces, as superoperators.

In Haskell, the standard model of pure types is defined using a type of vector

that is, in essence, a function from elements (of a basis), to their corresponding

probability amplitudes. Linear operators are then defined as functions from ele-

ments of a basis to vectors, which are applied to vectors using a form of monadic

205

bind.

type PA = Complex Double

type Vec a = a → PA

type Lin a b = a → Vec b

It is this monadic structure that can be thought of as modelling the probabilistic

nature of quantum computations, but it means that it is not straight forward

to add another level of abstraction that models the effectful part of quantum

computation that arises from measurement.

It has already been noted, that the Quantum IO monad gets around this prob-

lem as it is only modelling the effectful part of quantum computation, and not

the probabilistic nature of running the computations. QIO embeds the running

of a quantum computation into a different monadic structure if and when a user

decides to simulate running the computation. Indeed, the monadic structure de-

fined to model the probabilistic aspects of running a quantum computation would

be unnecessary if we had a quantum machine on which to run the code, whereas

the monadic structure of the code itself would still remain.

This is where the authors of [VAS06] argue that a change in the semantics to

the density matrix and superoperator model can also be used to overcome this

problem. In Haskell, they are able to define the type of density matrices as a

specific instance of the previously defined Vec type.

type Dens a = Vec (a, a)

and a definition of superoperators that would follow from the previous definition

for linear operators. That is, modelling superoperators as functions from pairs of

elements, to Density operators, and then trying to define something similar to a

monadic bind that can apply the superoperator to an entire density matrix.

type Super a b = (a, a)→ Dens b

It is when we look at the type of the bind operation required that we can start

to notice that a monadic structure is somehow not enough to model such an

operation.

206

>>= ::Dens a → ((a, a)→ Dens b)→ Dens b

It is noted that

This type does not however correspond to the required type as

computations now consume multiple input values

and how it is reminiscent of the original motivation behind Hughes’ generalisation

of monads to arrows ([Hug00]).

With the definitions for density matrices and superoperators in place, it is now

possible to define the construction and composition of superoperators in terms of

the constructors of the Arrow type class. A superoperator can be constructed from

a pure function using the arr constructor, superoperators can be composed using

the >>> constructor, and the first constructor is able to apply a superoperator

only to the first component, leaving the second component unchanged.

In keeping with what is now the De Facto notation for arrow computations in

Haskell ([Pat01]), quantum computations can be written in terms of superopera-

tors being applied to an overall quantum state. As it was one of the motivating

examples, we shall use the definition of teleportation to compare this approach to

computations written in QIO .

The following definition of Teleportation using the arrows approach is taken

directly from [VAS06]. It is split into three parts, corresponding to Alice’s oper-

ations, Bob’s operations, and the combination of the two to describe the entire

teleportation protocol. As such, we shall compare each part with its corresponding

QIO code.

alice :: Super (Bool ,Bool) (Bool ,Bool)

alice = proc (eprL, q)→ do

(q1 , q2)← (lin2super (controlled qnot)) ≺ (q , erpL)

q2 ← (lin2super hadamard) ≺ q1

((q3 , e2), (m1 ,m2))← meas ≺ (q2 , e1)

(m1 ′,m2 ′)← trL ≺ ((q3 , e2), (m1 ,m2))

returnA ≺ (m1 ′,m2 ′)

207

Alice’s part is defined as a superoperator between quantum values of (Bool ,Bool),

although the output values are in a single base state due to the measurements. In

QIO this is explicit in the type of Alice’s computation, as her input is two qubits,

and the output is a quantum computation that returns two Boolean values. As

can be seen, the arrows approach also means that the result of applying an op-

eration has to be labelled explicitly as a new variable, so the programmer has

to keep track of all the variables within the computation. This also follows from

the arrows approach being an extension to the original Haskell model presented

previously, as computations are defined by having a global state that is updated

by any operations. The QIO code for Alice’s part is given below.

alice :: Qbit → Qbit → QIO (Bool ,Bool)

alice aq eq = do applyU (ifQ aq (unot eq))

applyU (uhad aq)

measQ (aq , eq)

As the global state is hidden (or indeed, not even defined until runtime), we

treat qubits as particles, and computations consist of operations on these qubits

that don’t explicitly update any form of global state. The other overhead in the

arrows approach comes from the use of density matrices, as after measurement, the

now extraneous quantum information must be traced out of the overall state. That

is, that a measurement creates a density matrix that contains the measurement

results, as well as the remaining quantum states that such a measurement would

leave. These quantum states correspond to the states left after the side-effects of

measurement have occurred.

We can now look at Bob’s part of the protocol.

bob :: Super (Bool ,Bool ,Bool) Bool

bob = proc (erpR,m1 ,m2)→ do

(m2 ′, e1)← (lin2super (controlled qnot)) ≺ (m2 , eprR)

(m1 ′, e2)← (lin2super (controlled z)) ≺ (m1 , e1)

q ′ ← trL ≺ ((m1 ′,m2 ′), e2)

208

returnA ≺ q ′

Bob’s part is a super-operator from a quantum value of type (Bool ,Bool ,Bool)

to a single quantum value of type Bool . Again, the type of the operator doesn’t

give us such a good intuition into what is occurring. One of Bob’s inputs is indeed

in a quantum state, but the other two values are the classical data from Alice.

Compare this with the type of Bob’s function written in QIO .

bob :: Qbit → (Bool ,Bool)→ QIO Qbit

bob eq (a, b) = do applyU (if b then (unot eq) else mempty)

applyU (if a then (uZ eq) else mempty)

return eq

The rest of the definitions are very similar, although again, an explicit trace must

be made to leave only the single quantum value as required. So as to have a

complete example, we also include the combination of Alice and Bob’s parts in

the overall teleportation protocol.

teleport :: Super (Bool ,Bool ,Bool) Bool

teleport = proc (erpL, eprR, q)→ do

(m1 ,m2)← alice ≺ (eprL, q)

q ′ ← bob ≺ (erpR,m1 ,m2)

returnA ≺ q ′

teleportation :: Qbit → QIO Qbit

teleportation iq = do (eq1 , eq2)← bell

cd ← alice iq eq1

tq ← bob eq2 cd

return tq

The arrows approach gives a nice way of extending the original model of quan-

tum computation given in Haskell ([Sab03]) so that it explicitly models the side

effects of measurement as well as the probabilistic nature of the values returned by

a measurement. However, it is still modelling quantum computation in Haskell,

and as such has quantum states explicit in the syntax. QIO is intended to be

209

more of a language for defining quantum computations, that is separate from the

underlying model of quantum computation. That is, computations written in QIO

can be thought of as programs that can be interpreted into any model of quan-

tum computation, whereas computations written using this arrows approach are

hard-wired into the underlying model of quantum computation defined in Haskell.

The arrows approach presented here, also has a few draw backs. The main one

of which is that it is possible to define arrows that don’t give rise to physically

realisable superoperators. This is because there is no way of controlling weakening.

For an arrow to be a superoperator, it is necessary that every variable within the

arrow is used. As an example, it is totally acceptable in Haskell to write Bob’s

operation as follows:

bob :: Super (Bool ,Bool ,Bool) Bool

bob = proc (erpR,m1 ,m2)→ do

(m2 ′, e1)← (lin2super (controlled qnot)) ≺ (m2 , eprR)

(m1 ′, e2)← (lin2super (controlled z)) ≺ (m1 , e1)

returnA ≺ e2

whereby we haven’t explicitly traced out the other values, before returning e2 .

As such, this isn’t a physically realisable superoperator, even though it may seem

logically correct. It is noted therefore, that this model of quantum computation

may be better off being treated as a model of quantum computation into which

other languages can be compiled. Specifically languages in which weakening is

dealt with explicitly. As such, we move on now to look at QML, a functional

quantum programming language that deals with weakening explicitly.

11.4 QML

QML ([AG05, Gra06]), is presented as a functional quantum programming lan-

guage that allows both quantum and classical control. Previous quantum pro-

gramming languages had been presented that allowed classical control, whereby a

210

quantum value is measured, and the corresponding classical value can be used to

decide which path of a computation is executed. In introducing quantum control,

QML allows a form of quantum if structure (denoted if◦), whereby a superposition

can be used as a first class term, allowing orthogonal branches of the computation

to both contribute to the result. This form of quantum control lead to the design

of the conditional operation available in QIO , in which the state of a qubit can

be used as the control in a conditional. In fact, the orthogonality conditions that

must hold for the branches of an if◦ operation in QML, are satisfied in QIO by

the constraint that the state of the control qubit must not be changed by either

of the branches.

The syntax of QML is designed so as to be similar to other functional pro-

gramming languages, and is based on strict linear logic so as to keep weakenings

explicit. The choice of semantics for QML also means that reversible, and ir-

reversible computations can be defined, and the semantics is able to embed the

irreversible computations into a larger reversible structure. This is very similar

to the techniques described in [GA08], and in fact, the operational semantics are

based on the categorical model FQC. That is, that the compiler for QML trans-

lates functions written in QML into typed quantum circuits as defined in the

category FQC. The compiler actually uses FQC as an intermediary structure,

whereby a further denotational semantics can be chosen as the final output of

a compilation. The choice of denotational semantics includes unitary matrices,

isometries, or superoperators.

QML is developed as a fully independent language, with a compiler written

in Haskell. This has the advantages that the language design doesn’t depend on

any underlying parent language, and also means that the language designer has

complete control over the types, and constructs available in the language. There

are some draw backs to this, in that there is also no extra structure provided for

free by a parent language, such as all the classical types and functions that we

can use in QIO because they form part of standard Haskell. However, anything

211

that is essential can be added to the language, and it is argued in [Gra06] that

a better model of classical types and structures in QML would be a nice feature.

For example, the following code (taken from [Gra06]) forms a variant of Deutsch’s

algorithm written in QML.

deutsch ∈ Q2 ⊸ Q2 ⊸ Q2

deutsch a b = let (x , y) =

if◦ qfalse + qtrue

then (qtrue, if◦ a

then (qfalse + (−1) ∗ qtrue, (qtrue, b))

else ((−1) ∗ qfalse + qtrue, (qfalse, b)))

else (qfalse, if◦ b

then ((−1) ∗ qfalse + qtrue, (a,qtrue))

else (qfalse + (−1) ∗ qtrue, (a,qfalse)))

in had x

There is a lot of extra structure involved that could be removed if there was

a better model of classical data in QML, and indeed this variant of Deutsch’s

algorithm is a test on the equality of two qubits (which are both guaranteed to

be in a computational base state) as the classical types available in the current

implementation of QML aren’t sufficient to define Deutsch’s algorithm in its more

traditional guise of testing whether a given function is balanced. In ([Gra06]),

Grattage goes on to give a simplified version of this algorithm, that assumes a

slightly better classical structure in QML. We shall give this here, and look at

what is going on in more detail.

deutsch ∈ Bool ⊸ Bool ⊸ Q2

deutsch a b = let (x , y) = if◦ qfalse + qtrue

then (qtrue, if a

then qfalse + (−1) ∗ qtrue

else (−1) ∗ qfalse + qtrue)

else (qfalse, if b

212

then (−1) ∗ qfalse + qtrue

else qfalse + (−1) ∗ qtrue)

in had x

The outer if◦ statement is using an equal superposition of qfalse, and qtrue

to run both branches of the computation. The first branch adds a negative phase

to the qtrue part of an equal superposition if the input a is True, and adds

a negative phase to the qfalse part of an equal superposition if the input a is

False. The second branch does the opposite depending on the input value b. If

the input Booleans are equal, then the overall state is left in ± (qfalse + (−1) ∗

qtrue,qfalse + (−1) ∗qtrue), whereas if the values aren’t equal the overall state

is left as ± (qfalse+qtrue,qfalse+(−1)∗qtrue). The final Hadamard operation

will therefore take either of the equal cases to ± qtrue, and the non-equal cases

to ± qfalse.

Another nice example of QML is that of teleportation, taken from ([Gra08]). I

have changed the names of some of the functions so that they are easier to compare

with the QIO implementation of teleportation, given previously.

Had ,Qnot ,Meas ∈ Q2 ⊸ Q2

Had b = if◦ b then qfalse +−qtrue

else qfalse + qtrue

Qnot b = if◦ b then qfalse else qtrue

Meas b = if b then qtrue else qfalse

CNot ∈ Q2 ⊸ Q2 ⊸ Q2 ⊗ Q2

CNot s t = if◦ s then (qtrue,Qnot t)

else (qfalse, t)

Bell ∈ Q2 ⊗ Q2

Bell = (qtrue,qtrue) + (qfalse,qfalse)

Alice ∈ Q2 ⊸ Q2 ⊸ Q2 ⊗ Q2

Alice x y = let (x ′, y ′) = CNot x y

213

in (Meas (Had x ′),Meas y ′)

Bob ∈ Q2 ⊸ Q2 ⊗ Q2 ⊸ Q2

Bob q xy = let (x , y) = xy in if x then (if y then U11 q else U10 q)

else (if y then U01 q else q)

U01, U10, U11 ∈ Q2 ⊸ Q2

U01 x = if◦ x then qfalse else qtrue

U10 x = if◦ x then− qtrue else qfalse

U11 x = if◦ x then− qfalse else qtrue

Tele ∈ Q2 ⊸ Q2

Tele q = let (a, b) = Bell

cd = Alice q a

in Bob b cd

Again, the lack of classical types means that the types of the teleportation

functions are unable to tell us that it is indeed classical data that Alice is creating,

although if we look at the procedure we do know that the pair of qubits that Alice

creates are in a base state as they are measured. It is also noticeable how QML

defines computations over quantum states, and not qubits. That is, QML treats

qubits directly as a two-level quantum state, and not a particle which has that

state as a property.

QML is a functional quantum programming language that is designed to model

the higher-level aspects of quantum computation. This is also the case of the

previous two models of quantum computation that have been presented in this

chapter. As such, they aim to abstract away from the lowest level of computations

as unitary operations occurring on individual qubits. Instead they are designed

to model quantum computations at a higher level, and as operations on larger

quantum structures. In contrast, QIO has been designed as a low level language,

although you are able to define operations that act as an interface to the higher

level constructs modelled in these languages.

214

11.5 Conclusions

Having given a more in depth introduction to some of the other works that are

closely related to QIO , along with some comparisons to QIO itself, I would like to

finish this chapter with some conclusions, and closing remarks on how QIO places

in the current landscape of functional quantum programming languages.

QIO as it currently stands, is an embedded language for defining quantum

computations within the parent language. In this case, the parent language is

either Haskell or Agda. This gives us a greater opportunity to use the abstractions

available in these well developed functional programming languages in situ with

the extra constructions defined for QIO . A nice example that shows the benefits of

such an embedding is the definition of the Qdata class in Haskell, where we actually

use Haskell’s class system to give extra structure to the quantum computations

we can define in QIO .

Many of the functional quantum programming languages that currently exist

are designed to model the higher-level aspects of quantum computation. That is,

they are designed so as to abstract away from the low level aspects of quantum

computations being defined as unitary operations occurring on qubits. In order to

do this, many of them treat quantum states as first class entities, and computations

are defined as unitary operations occurring on these states. However, QIO is

designed from the opposite perspective, where at the lowest level, we must define

everything in terms of operations on qubits. However, we are also able to use the

language tools available to us (from the parent languages) to create functional

abstractions that model the same high-level aspects as are inherent in the other

languages.

One advantage of having QIO as a low-level language, is that it could be

treated as the operational semantics for high-level languages. However, as we

can already use functional abstractions with-in QIO , we can also think of QIO

computations in terms of these higher-level structures directly. Another advantage

of QIO ’s low-level approach is that it makes reasoning about QIO programs an

215

easier prospect. For example, in the Agda implementation of QIO , we are able to

reason about QIO programs in the same way as any other Agda programs, in that

the dependent type system allows us to embed proofs of certain specifications into

our code.

216

Chapter 12

Discussion and Conclusions

12.1 Comparing the Haskell and Agda imple-

mentations

In this thesis, I have presented my work on the Quantum IO Monad, with a full

implementation written in the functional programming language Haskell, and a

further development of the QIO Monad written in the dependently-typed (func-

tional) language Agda. The Quantum IO Monad was designed as an interface to

quantum computation, with the view that it could be developed into a full quan-

tum programming language. The choice of writing QIO in Haskell was originally

based on Haskell’s monadic approach to effectful programming, which leads to a

very nice setting for a quantum language as the side-effects from measurement

have to be dealt with explicitly in the design of the language. Using Haskell also

meant that we could work with QIO as an embedded language, or more accurately

as a Haskell library, and use all the language tools that Haskell has available for

it. However, although the implementation defines a fully universal quantum pro-

gramming language, the type system of Haskell isn’t expressive enough to ensure

the unitarity of all the operators defined within QIO. This lead to our quantum

simulator functions having to throw runtime errors, which would not necessar-

ily be possible on an actual quantum machine. The move to Agda meant that

217

these checks for unitarity could be moved to the type-level, and thus would be

caught at compile time, before the code could ever be run on a quantum ma-

chine. The work on QIO in Agda presented in this thesis goes some way towards

a full reimplementation of QIO which contains formal proofs of the unitarity of

the computations that can be defined, although the proofs that we must currently

provide are overly long and complicated due to the lack of an implementation of

the real numbers in Agda. Despite this drawback, the implementation provided

does represent a fully universal library of quantum computation within Agda, in

keeping with the monadic design of the original Haskell implementation. Indeed,

we are able to write QIO computations in Agda in a very similar manner to the

examples given in Haskell, along with the necessary proofs. These computations

can then be compiled into executable code that simulates the running of the quan-

tum computations using a floating point representation of the real numbers. The

on-line code repository [Gre09] currently contains implementations of a few of the

simplest quantum algorithms written in QIO Agda, along with an example pro-

gram that can be used to compile QIO computations. It is expected that more

examples will be added to this repository as they are implemented.

The proofs we define are indeed proofs of the unitarity of the operators in

QIO Agda, despite the current implementation meaning they are overly long and

complicated. This means that code can be written using the monadic behaviour of

QIO to explicitly deal with any side-effects that may occur due to measurement,

that is verified to represent a computation that is realisable in the standard model

of quantum computation. This verification is likely to be a major issue when we

actually have quantum machines that can run computations, as any un-unitary

behaviour cannot be modelled physically. As such, QIO Agda can be thought

of as a proof of concept that suitable quantum programming languages can be

developed.

QIO Agda also goes someway towards showing that we can provide a language

in which new quantum algorithms can be developed. This arises from being able to

218

give proofs that any algorithms that are developed are indeed an implementation

of their specification. These proofs may appear to have to include a classical

simulation of the defined algorithm, but often the proofs can be defined for small,

manageable sizes of input, and then extended automatically for arbitrarily large

inputs.

12.2 Further Work

There is further work that can be done in many of the areas presented in this

thesis. The three equivalence laws presented in Chapter 3 have not been shown

to be complete, in the sense that all equivalences can be given just in terms of

these three laws. Further work in this area has been suggested, such as looking

at the functoriality of the circuits that we can define to give a better definition of

equivalence [YY09].

The work on QIO in Haskell gives a nice syntax to quantum computations,

despite the drawbacks that have been discussed. The semantics of these com-

putations comes directly from the quantum gate model, and indeed the choice

of constructs available in QIO is based heavily on a universal family of circuits

presented in the categorical model FxC≃. However, recent work has shown that

other models of quantum computation, such as the one-way model of quantum

computation [BB06] could give rise to a more physically realisable implementa-

tion of a quantum computer. As such, a nice follow up to QIO in Haskell would be

to re-implement it such that the semantics are based on the measurement calculus

[DKP07], which is a calculus that describes the behaviour of one-way quantum

computation.

The work in this thesis that could be extended on the most is the implementa-

tion of QIO in Agda. As it stands, it is more of a proof of concept than a usable

system for defining formally verified quantum computations. The main area that

needs to be tackled to give a better implementation of QIO in Agda is in defining

219

a type of real numbers. The work in [GN02] develops a construction of the real

numbers in Coq, which is a proof assistant that can be thought of as a dependently

typed language. A reimplementation of this work in Agda could provide a better

starting point for constructing the formal proofs needed in our implementation,

although there is other work ongoing in developing an implementation of the real

numbers in Agda. Even with a better definition of the real numbers in Agda, there

is still more work that could be done to improve it. For instance, a few changes to

the language syntax would enable us to reference qubits explicitly in our monadic

construct that applies a unitary, which would allow Agda to automatically lift

the qubits in scope in a similar manner to the weakening of references in [Swi08]

chapter 6.

12.3 Conclusions

This thesis has presented my research into the field of quantum computation

from the perspective of a functional programmer. Along with my research I have

also tried to present introductions to each of the main subject areas that are

covered. That is, I have given an introduction to quantum computation that covers

the main aspects of qubits, superposition, entanglement, unitary operations, and

measurement. In the measurement section I have focused specifically on the side-

effects that can be caused when measuring entangled systems. I have also given

an introduction to functional programming, and more specifically the language

Haskell. It was my aim, in presenting an introduction to functional programming,

to give an intuition into the use of monadic constructs in Haskell to explicitly deal

with effectful computation. The last subject introduced is that of dependently-

typed programming, specifically in the language Agda. The introduction covers

the topic of indexed monads, and also looks at how programs in Agda can be

thought of as formal proofs that are verified by the type-checker.

The bulk of this thesis presents my work on a monadic interface to quantum

220

computation, known as the Quantum IO monad, or QIO. The monadic approach

taken is unique amongst the languages currently available for quantum computa-

tion, as it keeps the behaviour of side-effects that may arise from measurements

explicit within the language constructs. The work uses many ideas from previous

quantum languages, such as the use of quantum control structures that were first

developed for QML ([AG05, Gra06]). Many of these language constructs have

been formalised in a categorical setting, such as the category of quantum circuits

that has also been presented.

The development of QIO as a monadic structure followed directly from the use

of monads in Haskell to define any form of effectful computation. Recent work on

reasoning about monadic computations ([SA07, Swi08]) has been a big influence

on the design of the monadic constructs for QIO, and indeed many of the ideas on

reasoning about monadic computations in Agda, presented in [Swi08], have also

been used when reimplementing QIO in a dependently-typed setting.

Using a monadic approach in modelling quantum computation gives us some

advantages over other approaches. Firstly, the subject of monads is well devel-

oped, especially in the area of functional programming, where monads are used to

model any form of effectful computation. Secondly, the whole monadic approach

is designed to give a model of computation in which effects are explicit. Quantum

computation is, by the very nature of measurements, an effectful form of computa-

tion, and it is therefore very natural to think of it in terms of a monadic structure.

Having a model of quantum computation in which the side-effects of computation

are explicitly modelled also gives us a frame work in which we can start to reason

about our computations. This comes about, as we are able to use the monadic

structure to give meaning to the side-effects that may occur.

Using a monadic approach to model the side-effects of measurement also means

that we are able to move the development of unitary operators to a separate

monoidal construct, and only worry about effectful parts of the computation when

we introduce measurements. Indeed, many of the example programs given for QIO

221

are first defined in terms of unitary operators, and then used in a specific com-

putation in which initialisations and measurements can also occur. Having the

monoidal structure of unitaries separate from the monadic structure of compu-

tations means that we are able to reason about our programs in terms of the

behaviour of the unitary operators. In QIO Agda, we have formalised this idea, in

the sense that every unitary structure that we are able to define comes with a cor-

responding proof that it is indeed unitary. These proofs can then be used within

the definition of a monadic quantum computation to give a formal verification

that the computation fulfils its specification.

As physical realisations of quantum computers develop further, it will be im-

portant that quantum programs can be shown to satisfy a given specification.

Having a system that enables the verification of quantum programs, classically,

may be a major benefit as the cost of quantum machines would mean that running

quantum code is quite a commodity. Verifying code classically before it is ever

run on a quantum system will help ensure that the resource of quantum machines

isn’t wasted on running incorrect programs.

12.4 Final remarks

The research I have done for this thesis has given me a great insight into the world

of quantum computation, and has only helped to whet my appetite for the subject

and surrounding areas. There is plenty more work that could be done with QIO,

to develop it into a language that could be used for the quantum computers of

the future. The subject area itself is full of many interesting people, and is a

perfect avenue for greater collaboration between different subject areas that are

working toward similar goals. It is this ongoing collaboration between physicists,

computer scientists, and mathematicians etc. that may one day provide us with

quantum systems capable of computation in this style. It is my hope, especially

as a computer scientist, that work similar to the work presented in this thesis,

222

shall help to contribute towards having languages for these systems free from all

the bugs and subsequent crashes etc. that plague the world of classical computers

in the current era. I would like to thank anyone who has taken the time to read

this thesis, and hope that it has been a valuable insight into my research.

223

Bibliography

[AC03] Samson Abramsky and Bob Coecke. Physical traces: Quantum vs.

classical information processing. In Proceedings of the 9th Conference

on Category Theory and Computer Science (CTCS 2002), volume 69

of Electronic Notes in Theoretical Computer Science. Elsevier Science,

2003. Also arXiv:cs.CG/0207057.

[AC04] Samson Abramsky and Bob Coecke. A categorical semantics of quan-

tum protocols. In Proceedings of the 19th Annual IEEE Symposium

on Logic in Computer Science (LICS). IEEE Computer Society, 2004.

Also arXiv:quant-ph/0402130.

[AD08] P. Arrighi and G. Dowek. Linear-Algebraic A-Calculus: Higher-Order,

Encodings, and Confluence. In Rewriting Techniques and Applica-

tions: 19th International Conference, RTA 2008 Hagenberg, Austria,

July 15-17, 2008, Proceedings, page 17. Springer, 2008.

[AG05] Thorsten Altenkirch and Jonathan Grattage. A functional quantum

programming language. In Proceedings of the 20th Annual IEEE Sym-

posium on Logic in Computer Science (LICS). IEEE Computer Soci-

ety, 2005. Also arXiv:quant-ph/0409065.

[AG10] Thorsten Altenkirch and Alexander Green. The Quantum IO Monad.

In Simon Gay and Ian Mackie, editors, Semantic Techniques in

Quantum Computation. Cambridge University Press, 2010. ISBN13-

9780521513746.

224

[BB06] Dan E. Browne and Hans J. Briegel. One-way quantum computation

- a tutorial introduction, 2006.

[BCDP96] David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and

John Preskill. Efficient networks for quantum factoring. Phys. Rev.

A, 54(2):1034–1063, Aug 1996.

[Bel64] John S. Bell. On the Einstein–Podolsky–Rosen paradox. Physics,

1(??):195–200, 1964.

[CDKM04] Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and

David Petrie Moulton. A new quantum ripple-carry addition circuit,

2004.

[Coe05] Bob Coecke. Kindergarten quantum mechanics, 2005.

[Deu85] D. Deutsch. Quantum Theory, the Church-Turing Principle and the

Universal Quantum Computer. Proceedings of the Royal Society of

London. Series A, Mathematical and Physical Sciences, 400(1818):97–

117, 1985.

[Dir82] P. A. M. Dirac. The Principles of Quantum Mechanics (International

Series of Monographs on Physics). Oxford University Press, USA,

February 1982.

[DJ92] D Deutsch and R Jozsa. Rapid solution of problems by quantum

computation. Proc Roy Soc Lond A, 439:553–558, October 1992.

[DKP07] Vincent Danos, Elham Kashefi, and Prakash Panangaden. The mea-

surement calculus. Journal of the ACM, 54(2), 2007. Preliminary

version in arXiv:quant-ph/0412135.

[Dra00] Thomas G. Draper. Addition on a quantum computer, 2000.

225

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical de-

scription of physical reality be considered complete? Physical Review,

47:777–780, May 1935.

[Eve57] H. Everett. ‘Relative State’ formulation of quantum mechanics. Re-

views of Modern Physics, 29:454–462, 1957.

[Fey82] Richard Feynman. Simulating physics with computers. International

Journal of Theoretical Physics, 21:467–488, 1982.

[GA08] Alexander S. Green and Thorsten Altenkirch. From reversible to irre-

versible computations. Electronic Notes in Theoretical Computer Sci-

ence, 210:65 – 74, 2008. Proceedings of the 4th International Workshop

on Quantum Programming Languages (QPL 2006).

[Gay06] Simon J. Gay. Quantum programming languages: Survey and bibli-

ography. Mathematical Structures in Computer Science, 16(4), 2006.

[GN02] Herman Geuvers and Milad Niqui. Constructive reals in coq: Ax-

ioms and categoricity. In TYPES ’00: Selected papers from the Inter-

national Workshop on Types for Proofs and Programs, pages 79–95,

London, UK, 2002. Springer-Verlag.

[Gos98] Phil Gossett. Quantum carry-save arithmetic, 1998.

[Gra06] J. J. Grattage. QML: A functional quantum programming language.

PhD thesis, The University of Nottingham, 2006.

[Gra08] Jonathan Grattage. An overview of qml with a concrete implementa-

tion in haskell, 2008.

[Gre09] Alexander S. Green. The Quantum IO Monad, source code and ex-

ample computations (for both haskell and agda implementations).

http://www.cs.nott.ac.uk/˜asg/QIO/, 2009.

226

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database

search. In STOC ’96: Proceedings of the twenty-eighth annual ACM

symposium on Theory of computing, pages 212–219, New York, NY,

USA, 1996. ACM.

[HRP+06] P A Hiskett, D Rosenberg, C G Peterson, R J Hughes, S Nam, A E

Lita, A J Miller, and J E Nordholt. Long-distance quantum key dis-

tribution in optical fibre. New Journal of Physics, 8(9):193, 2006.

[Hug00] John Hughes. Generalising monads to arrows. Sci. Comput. Program.,

37(1-3):67–111, 2000.

[Hut07] Graham Hutton. Programming in Haskell. Cambridge University

Press, January 2007.

[Jon03] Simon P. Jones. Haskell 98 Language and Libraries: The Revised

Report. Cambridge University Press, May 2003.

[Kar03] Jerzy Karczmarczuk. Structure and interpretation of quantum me-

chanics — a functional framework. In Proceedings of the ACM SIG-

PLAN Workshop on Haskell. ACM Press, 2003.

[Lan00] R. Landauer. Irreversibility and heat generation in the computing

process. IBM Journal of Research and Development, 44(1):261–269,

2000.

[Mac71] Saunders MacLane. Categories for the working mathematician.

Springer-Verlag, New York, 1971. Graduate Texts in Mathematics,

Vol. 5.

[MB01] Shin-Cheng Mu and Richard Bird. Functional quantum programming.

In Proceedings of the 2nd Asian Workshop on Programming Languages

and Systems, 2001.

227

[McB99] Conor McBride. Dependently Typed Functional Programs and their

Proofs. PhD thesis, University of Edinburgh, 1999.

[McB02] Conor McBride. Faking It (Simulating Dependent Types in Haskell).

Journal of Functional Programming, 12(4& 5):375–392, 2002. Special

Issue on Haskell.

[Mer85] David N. Mermin. Is the moon there when nobody looks? reality and

the quantum theory. Physics Today, 38(4):38–47, 1985.

[ML84] Per Martin-Lf. Intuitionistic type theory. Bibliopolis, Napoli, 1984.

[Mog88] Eugenio Moggi. Computational lambda-calculus and monads. pages

14–23. IEEE Computer Society Press, 1988.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information. Cambridge University Press, October 2000.

[Nor07] Ulf Norell. Towards a practical programming language based on depen-

dent type theory. PhD thesis, Department of Computer Science and

Engineering, Chalmers University of Technology, SE-412 96 Göteborg,

Sweden, September 2007.

[Pat01] Ross Paterson. A new notation for arrows. In International Conference

on Functional Programming, pages 229–240. ACM Press, September

2001.

[Pre04] John Preskill. Lectures on quantum computation.

http://www.theory.caltech.edu/people/preskill/ph229/, 1997 to

2004.

[RSA77] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining

digital signatures and public-key cryptosystems. Technical Report

MIT/LCS/TM-82, 1977.

228

[Rud07] Roland Rudiger. Quantum Programming Languages: An Introductory

Overview. The Computer Journal, 50(2):134–150, 2007.

[SA07] Wouter Swierstra and Thorsten Altenkirch. Beauty in the beast: A

functional semantics of the awkward squad. In Haskell ’07: Proceed-

ings of the ACM SIGPLAN workshop on Haskell, 2007.

[Sab03] Amr Sabry. Modelling quantum computing in Haskell. In Proceedings

of the ACM SIGPLAN Workshop on Haskell. ACM Press, 2003.

[Sel04] Peter Selinger. Towards a quantum programming language. Mathe-

matical Structures in Computer Science, 14(4):527–586, 2004.

[Sel07] Peter Selinger. Dagger compact closed categories and completely posi-

tive maps: (extended abstract). In Proceedings of the 3rd International

Workshop on Quantum Programming Languages (QPL 2005), volume

170 of Electronic Notes in Theoretical Computer Science, pages 139–

163, 2007.

[Sho94] P Shor. Algorithms for quantum computation: discrete logarithms and

factoring. In Proceedings, 35th Annual Symposium on Foundations of

Computer Science. CA: IEEE Press, 1994.

[Sim94] David R. Simon. On the power of quantum computation. In Pro-

ceedings of the 35th Annual Symposium on Foundations of Computer

Science, pages 116–123, Los Alamitos, CA, 1994. Institute of Electri-

cal and Electronic Engineers Computer Society Press.

[Sit08] Ganesh Sittampalam. Restricted monads in Haskell, live journal entry.

http://hsenag.livejournal.com/11803.html, March 2008.

[SV09] Peter Selinger and Benot Valiron. Quantum lambda calculus. In

Simon Gay and Ian Mackie, editors, Semantic Techniques in Quantum

Computation. Cambridge University Press, 2009+. to appear.

229

[Swi08] Wouter Swierstra. A Functional Specification of Effects. PhD thesis,

University of Nottingham, 2008.

[Val08] Benot Valiron. Semantics for a Higher Order Functional Program-

ming Language for Quantum Computation. PhD thesis, University of

Ottawa, 2008.

[VAS06] Juliana Kaizer Vizzotto, Thorsten Altenkirch, and Amr Sabry. Struc-

turing quantum effects: Superoperators as arrows. Mathematical

Structures in Computer Science, 16(3), 2006. Also arXiv:quant-

ph/0501151.

[VBE95] V. Vedral, A. Barenco, and A. Ekert. Quantum networks for elemen-

tary arithmetic operations, 1995.

[VSB+01] Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta,

Costantino S. Yannoni, Mark H. Sherwood, and Isaac L. Chuang.

Experimental realization of shor’s quantum factoring algorithm using

nuclear magnetic resonance. Nature, 414:883, 2001.

[YY09] Tomoo Yokoyama and Tetsuo Yokoyama. Functoriality in reversible

circuits (work in progress). In Preliminary Proceedings of the Work-

shop on Reversible Computation, pages 68–72, 2009.

230

