research

String theories as the adiabatic limit of Yang-Mills theory

Abstract

We consider Yang-Mills theory with a matrix gauge group GG on a direct product manifold M=Σ2×H2M=\Sigma_2\times H^2, where Σ2\Sigma_2 is a two-dimensional Lorentzian manifold and H2H^2 is a two-dimensional open disc with the boundary S1=H2S^1=\partial H^2. The Euler-Lagrange equations for the metric on Σ2\Sigma_2 yield constraint equations for the Yang-Mills energy-momentum tensor. We show that in the adiabatic limit, when the metric on H2H^2 is scaled down, the Yang-Mills equations plus constraints on the energy-momentum tensor become the equations describing strings with a worldsheet Σ2\Sigma_2 moving in the based loop group ΩG=C(S1,G)/G\Omega G=C^\infty (S^1, G)/G, where S1S^1 is the boundary of H2H^2. By choosing G=Rd1,1G=R^{d-1, 1} and putting to zero all parameters in ΩRd1,1\Omega R^{d-1, 1} besides Rd1,1R^{d-1, 1}, we get a string moving in Rd1,1R^{d-1, 1}. In arXiv:1506.02175 it was described how one can obtain the Green-Schwarz superstring action from Yang-Mills theory on Σ2×H2\Sigma_2\times H^2 while H2H^2 shrinks to a point. Here we also consider Yang-Mills theory on a three-dimensional manifold Σ2×S1\Sigma_2\times S^1 and show that in the limit when the radius of S1S^1 tends to zero, the Yang-Mills action functional supplemented by a Wess-Zumino-type term becomes the Green-Schwarz superstring action.Comment: 11 pages, v3: clarifying remarks added, new section on embedding of the Green-Schwarz superstring into d=3 Yang-Mills theory include

    Similar works