118 research outputs found

    Ground Based Program for the Physical Analysis of Macromolecular Crystal Growth

    Get PDF
    During the past year we have focused on application of in situ Atomic Force Microscopy (AFM) for studies of the growth mechanisms and kinetics of crystallization for different macromolecular systems. Mechanisms of macrostep formation and their decay, which are important in understanding of defect formation, were studied on the surfaces of thaumatin, catalase, canavalin and lysozyme crystals. Experiments revealed that step bunching on crystalline surfaces occurred either due to two- or three-dimensional nucleation on the terraces of vicinal slopes or as a result of uneven step generation by complex dislocation sources. No step bunching arising from interaction of individual steps in the course of the experiment was observed. The molecular structure of the growth steps for thaumatin and lipase crystals were deduced. It was further shown that growth step advance occurs by incorporation of single protein molecules. In singular directions growth steps move by one-dimensional nucleation on step edges followed by lateral growth. One-dimensional nuclei have different sizes, less then a single unit cell, varying for different directions of step movement. There is no roughness due to thermal fluctuations, and each protein molecule which incorporated into the step remained. Growth kinetics for catalase crystals was investigated over wide supersaturation ranges. Strong directional kinetic anisotropy in the tangential step growth rates in different directions was seen. The influence of impurities on growth kinetics and cessation of macromolecular crystals was studied. Thus, for catalase, in addition to pronounced impurity effects on the kinetics of crystallization, we were also able to directly observe adsorption of some impurities. At low supersaturation we repeatedly observed filaments which formed from impurity molecules sedimenting on the surfaces. Similar filaments were observed on the surfaces of thaumatin, canavalin and STMV crystals as well, but the frequency was low compared with catalase crystallization. Cessation of growth of xylanase and lysozyme crystals was also observed and appeared to be a consequence of the formation of dense impurity adsorption layers. Attachment: "An in situ AFM investigation of catalase crystallization", "Atomic force microscopy studies of living cells: visualization of motility, division, aggregation, transformation, and apoptosis", AFM studies on mechanisms of nucleation and growth of macromolecular crystals", and "In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization"

    X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin

    Full text link
    The structure of canavalin, the vicilin-class storage protein from jack bean, was refined to 1.7 A resolution in a highly twinned rhombohedral crystal of space group R3 and unit-cell parameters a = b = c = 83.0 A, alpha = beta = gamma = 111.1 degrees. The resulting R and R(free) were 0.176 and 0.245, respectively. The orthorhombic crystal structure (space group C222(1), unit-cell parameters a = 136.5, b = 150.3, c = 133.4 A) was also refined with threefold non-crystallographic symmetry restraints. R and R(free) were 0.181 and 0.226, respectively, for 2.6 A resolution data. No significant difference in the protein structure was seen between these two crystal forms, nor between these two and the hexagonal and cubic crystal forms reported elsewhere [Ko et al. (1993), Acta Cryst. D49, 478-489; Ko et al. (1993), Plant Physiol. 101, 729-744]. A phosphate ion was identified in the lumen of the C-terminal beta-barrel. Lattice interactions showed that the trimeric molecule could be well accommodated in both 'top-up' and 'bottom-up' orientations in a rhombohedral unit cell of the R3 crystal and explained the presence of a high twin fraction. The large inter-trimer stacking interface of the C222(1) crystal may account for its relative stability. Atomic force microscopy (AFM) investigations of the growth of three crystal forms of canavalin indicate the rhombohedral form to be unique. Unlike the other two crystal forms, it contains at least an order of magnitude more screw dislocations and stacking faults than any other macromolecular crystal yet studied, and it alone grows principally by generation of steps from the screw dislocations. The unusually high occurrence of the screw dislocations and stacking faults is attributed to mechanical stress produced by the alternate molecular orientations in the rhombohedral crystals and their organization into discrete domains or blocks. At boundaries of alternate domains, lattice strain is relieved by the formation of the screw dislocations

    Structure of orthorhombic crystals of beef liver catalase

    Full text link
    The growth mechanisms and physical properties of the orthorhombic crystal form of beef liver catalase were investigated using in situ atomic force microscopy (AFM). It was observed that the crystals grow in the <001> direction by an unusual progression of sequential two-dimensional nuclei of half unit-cell layers corresponding to the 'bottoms' and 'tops' of unit cells. These were easily discriminated by their alternating asymmetric shapes and their strong growth-rate anisotropy. This pattern has not previously been observed with other macromolecular crystals. Orthorhombic beef liver catalase crystals exhibit an extremely high defect density and incorporate great numbers of misoriented microcrystals, revealed intact by etching experiments, which may explain their marginal diffraction properties. To facilitate interpretation of AFM results in terms of intermolecular interactions, the structure of the orthorhombic crystals, having an entire tetramer of the enzyme as the asymmetric unit, was solved by molecular replacement using a model derived from a trigonal crystal form. It was subsequently refined by conventional techniques. Although the packing of molecules in the two unit cells was substantially different, with very few exceptions no significant differences in the molecular structures were observed. In addition, no statistically significant deviation from ideal 222 molecular symmetry appeared within the tetramer. The packing of molecules in the crystal revealed by X-ray analysis explained in a satisfying way the process of crystal growth revealed by AFM

    Nonequilibrium orientational patterns in two-component Langmuir monolayers

    Get PDF
    A model of a phase-separating two-component Langmuir monolayer in the presence of a photo-induced reaction interconvering two components is formulated. An interplay between phase separation, orientational ordering and treaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources and vortex defects.Comment: Submitted to the Physical Review

    Fighting Ebola with novel spore decontamination technologies for the military

    Get PDF
    AbstractRecently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army – Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established nonthermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of

    The incorporation of large impurities into virus crystals

    Full text link

    Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: the UK Twin Spine Study

    Get PDF
    Low back pain (LBP) is a common musculoskeletal disorder, but it is still unclear which individuals develop it. The authors examined the contribution of genetic factors, lumbar disc degeneration (LDD) and other risk factors in a female sample of the general population. Material an

    Bacillus atrophaeus

    Full text link

    Immunization with apical membrane antigen 1 confers sterile infection-blocking immunity against Plasmodium sporozoite challenge in a rodent model

    Get PDF
    Apical membrane antigen 1 (AMA-1) is a leading blood-stage malaria vaccine candidate. Consistent with a key role in erythrocytic invasion, AMA-1-specific antibodies have been implicated in AMA-1-induced protective immunity. AMA-1 is also expressed in sporozoites and in mature liver schizonts where it may be a target of protective cell-mediated immunity. Here, we demonstrate for the first time that immunization with AMA-1 can induce sterile infection-blocking immunity against Plasmodium sporozoite challenge in 80% of immunized mice. Significantly higher levels of gamma interferon (IFN-γ)/interleukin-2 (IL-2)/tumor necrosis factor (TNF) multifunctional T cells were noted in immunized mice than in control mice. We also report the first identification of minimal CD8 and CD4 T cell epitopes on Plasmodium yoelii AMA-1. These data establish AMA-1 as a target of both preerythrocytic- and erythrocytic-stage protective immune responses and validate vaccine approaches designed to induce both cellular and humoral immunity

    No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice

    Get PDF
    BACKGROUND: Several reports indicated that non-thermal electromagnetic radiation such as from mobile phones and base stations may promote cancer. Therefore, it was investigated experimentally, whether 900 MHz electromagnetic field exposure influences lymphoma development in a mouse strain that is genetically predisposed to this disease. The AKR/J mice genome carries the AK-virus, which leads within one year to spontaneous development of thymic lymphoblastic lymphoma. METHODS: 320 unrestrained female mice were sham-exposed or exposed (each n = 160 animals) to GSM like 900 MHz electromagnetic fields for 24 hours per day, 7 days per week, at an average whole body specific absorption rate (SAR) value of 0.4 W/kg. Animals were visually checked daily and were weighed and palpated weekly. Starting with an age of 6 months, blood samples were taken monthly from the tail. Animals with signs of disease or with an age of about 46 weeks were sacrificed and a gross necropsy was performed. RESULTS: Electromagnetic field exposure had a significant effect on body weight gain, with higher values in exposed than in sham-exposed animals. However, survival rate and lymphoma incidence did not differ between exposed and sham-exposed mice. CONCLUSION: These data do not support the hypothesis that exposure to 900 MHz electromagnetic fields is a significant risk factor for developing lymphoma in a genetically predisposed species, even at a relatively high exposure level
    corecore