31 research outputs found

    The neodymium stable isotope composition of the oceanic crust: Reconciling the mismatch between erupted mid-ocean ridge basalts and lower crustal gabbros

    Get PDF
    The trace element and isotopic compositions of mid-ocean ridge basalts (MORB) provide an important cornerstone for all studies seeking to understand mantle evolution. Globally there is a significant over-enrichment in the incompatible trace element concentrations of MORB relative to levels which should be generated by fractional crystallization. Thermal and geochemical constraints suggest that MORB require generation in open system magma chambers. However, the petrology of lower oceanic crustal rocks suggests instead that these enrichments maybe formed through reactive porous flow (RPF). Stable isotope compositions are process dependent and therefore provide an excellent mechanism to compare these contrasting models. This study presents the first neodymium (Nd) stable isotope compositions of Indian MORB and well characterized gabbroic rocks from the lower oceanic crust sampled at the Southwest Indian Ridge (Hole 735B). Indian MORB is extremely homogenous with a mean δ146Nd of −0.025 ±0.005‰ which is identical to the composition of Pacific MORB. Despite significant variability in the source composition of MORB globally (i.e. 143Nd/144Nd) their indistinguishable δ146Nd compositions suggests they were homogenized through the same process along the global ridge network. In stark contrast, oceanic gabbros have δ146Nd ranging from −0.026‰ to −0.127‰, doubling the natural variability in Nd stable isotopes observed in terrestrial rocks. Clinopyroxene separates possess variable δ146Nd but are isotopically heavier than the gabbroic whole rocks at the same major element compositions. These large variations in δ146Nd cannot be generated solely by the fractionation or accumulation of clinopyroxene and/or plagioclase. Hole 735B preserves widespread evidence of RPF which could induce kinetic isotopes fractionation during crystal growth. In clinopyroxene kinetic isotope fractionations will only induce ca. 0.02‰ variations therefore several cycles of dissolution and reprecipitation of isotopic signatures at grain boundaries are required to explain the range of δ146Nd observed in the gabbros. Given the large disconnect between the average composition of the lower crust (δ146Nd = −0.076‰) and MORB globally and the evidence of limited melt extraction into the upper crust at Hole 735B it is highly unlikely that the melts involved in RPF contributed in a substantial way to the Nd isotope composition of erupted MORB

    The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites

    Get PDF
    Young (61 Ma) unaltered picrites from Baffin Island, northwest Canada, possess some of the highest 3He/4He (up to 50 Ra) seen on Earth, and provide a unique opportunity to study primordial mantle that has escaped subsequent chemical modification. These high-degree partial melts also record anomalously high 182W/184W ratios, but their Sr-Nd-Hf-Pb isotopic compositons (including 142Nd) are indistinguishable from those of North Atlantic mid-ocean ridge basalts. New high precision Fe and Zn stable isotope analyses of Baffin Island picrites show limited variability with δ56Fe ranging from −0.03‰ to 0.13‰ and δ66Zn varying from 0.18‰ to 0.28‰. However, a clear inflection is seen in both sets of isotope data around the composition of the parental melt (MgO = 21 wt %; δ56Fe = 0.08 ± 0.04‰; and δ66Zn = 0.24 ± 0.03‰), with two diverging trends interpreted to reflect the crystallisation of olivine and spinel in low-MgO samples and the accumulation of olivine at higher MgO. Olivine mineral separates are significantly isotopically lighter than their corresponding whole rocks (δ56Fe ≥ −0.62‰ and δ66Zn ≥ −0.22‰), with analyses of individual olivine phenocrysts having extremely variable Fe isotope compositions (δ56Fe = −0.01‰ to −0.80‰). By carrying out modelling in three-isotope space, we show that the very negative Fe isotope compositions of olivine phenocryst are the result of kinetic isotope fractionation from disequilibrium diffusional processes. An excellent correlation is observed between δ56Fe and δ66Zn, demonstrating that Zn isotopes are fractionated by the same processes as Fe in simple systems dominated by magmatic olivine. The incompatible behaviour of Cu during magmatic evolution is consistent with the sulfide-undersaturated nature of these melts. Consequently Zn behaves as a purely lithophile element, and estimates of the bulk Earth Zn isotope composition based on Baffin Island should therefore be robust. The ancient undegassed lower mantle sampled at Baffin Island possesses a δ56Fe value that is within error of previous estimates of bulk mantle δ56Fe, however, our estimate of the Baffin mantle δ66Zn (0.20 ± 0.03‰) is significantly lower than some previous estimates. Comparison of our new data with those for Archean and Proterozoic komatiites is consistent with the Fe and Zn isotope composition of the mantle remaining constant from at least 3 Ga to the present day. By focusing on large-degree partial melts (e.g. komatiites and picrites) we are potenitally biasing our record to samples that will inevitably have interacted with, entrained and melted the ambient shallow mantle during ascent. For a major element such as Fe, that will continuosly participate in melting as it rises through the mantle, the final isotopic compositon of the magama will be a weighted average of the complete melting column. Thus it is unsuprising that minimal Fe isotope variation are seen between localities. In contrast, the unique geochemical signatures (e.g. He and W) displayed by the Baffin Island picrites are inferred to solely originate from the lowermost mantle and will be continuously diluted upon magma ascent

    Extensive crustal extraction in Earth’s early history inferred from molybdenum isotopes

    Get PDF
    Estimates of the volume of the earliest crust based on zircon ages and radiogenic isotopes remain equivocal. Stable isotope systems, such as molybdenum, have the potential to provide further constraints but remain underused due to the lack of complementarity between mantle and crustal reservoirs. Here we present molybdenum isotope data for Archaean komatiites and Phanerozoic komatiites and picrites and demonstrate that their mantle sources all possess subchondritic signatures complementary to the superchondritic continental crust. These results confirm that the present-day degree of mantle depletion was achieved by 3.5 billion years ago and that Earth has been in a steady state with respect to molybdenum recycling. Mass balance modelling shows that this early mantle depletion requires the extraction of a far greater volume of mafic-dominated protocrust than previously thought, more than twice the volume of the continental crust today, implying rapid crustal growth and destruction in the first billion years of Earth’s history

    Assessing hydrological controls on the lithium isotope weathering tracer

    Get PDF
    To investigate the impact of riverine discharge and weathering intensity on lithium isotopes (δ7Li) in a mono-lithological terrain, this study examines the dissolved load and leached suspended load (exchangeable, oxide, and clay fractions) from Icelandic rivers spanning a wide range of discharge, weathering rates, and weathering intensity. The δ7Lidissolved co-varies inversely with the discharge, confirming that water-rock interaction time is a primary control on the secondary mineral formation that fractionates Li isotopes. The “boomerang” shape observed in global rivers between the weathering intensity (i.e. W/D = weathering rate/denudation rate) and δ7Lidissolved also exists for these basaltic rivers at low to medium W/D. However, these rivers do not extend to such low δ7Lidissolved values as seen in the global compilation at low W/D, indicating that there is a lithological control on this relationship arising from the type of the lithology-specific secondary minerals forming and their precipitation rates. In addition, the Δ7Lix-dissolved between each leached solid phase and the dissolved load also co-varies with discharge. At low discharge (long water-rock interaction times), Δ7Lix-dissolved values agree with experimentally-determined equilibrium values, whereas less fractionated values are observed at higher discharge (shorter water-rock interaction times). As a result, there is a different relationship between W/D and Δ7Liclay-source in this basaltic terrain than previously reported from global multi-lithological river sediment samples, with clay leachates from Iceland more closely mimicking the boomerang shape of the dissolved load. However, the relationship between δ7Li and weathering processes is complicated because the fractionation between the clay fraction and the dissolved load is not constant but varies with both W/D and discharge. Overall, this study confirms the utility of Li isotopes as a tracer of modern and palaeo-weathering processes, and also has important implications for the specific interpretations of detrital δ7Li values, which may be more sensitive to weathering parameters than previously thought

    Assessing hydrological controls on the lithium isotope weathering tracer

    Get PDF
    To investigate the impact of riverine discharge and weathering intensity on lithium isotopes (δ7Li) in a mono-lithological terrain, this study examines the dissolved load and leached suspended load (exchangeable, oxide, and clay fractions) from Icelandic rivers spanning a wide range of discharge, weathering rates, and weathering intensity. The δ7Lidissolved co-varies inversely with the discharge, confirming that water-rock interaction time is a primary control on the secondary mineral formation that fractionates Li isotopes. The “boomerang” shape observed in global rivers between the weathering intensity (i.e. W/D = weathering rate/denudation rate) and δ7Lidissolved also exists for these basaltic rivers at low to medium W/D. However, these rivers do not extend to such low δ7Lidissolved values as seen in the global compilation at low W/D, indicating that there is a lithological control on this relationship arising from the type of the lithology-specific secondary minerals forming and their precipitation rates. In addition, the Δ7Lix-dissolved between each leached solid phase and the dissolved load also co-varies with discharge. At low discharge (long water-rock interaction times), Δ7Lix-dissolved values agree with experimentally-determined equilibrium values, whereas less fractionated values are observed at higher discharge (shorter water-rock interaction times). As a result, there is a different relationship between W/D and Δ7Liclay-source in this basaltic terrain than previously reported from global multi-lithological river sediment samples, with clay leachates from Iceland more closely mimicking the boomerang shape of the dissolved load. However, the relationship between δ7Li and weathering processes is complicated because the fractionation between the clay fraction and the dissolved load is not constant but varies with both W/D and discharge. Overall, this study confirms the utility of Li isotopes as a tracer of modern and palaeo-weathering processes, and also has important implications for the specific interpretations of detrital δ7Li values, which may be more sensitive to weathering parameters than previously thought

    The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites

    Get PDF
    Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    The neodymium stable isotope composition of the silicate Earth and chondrites

    Get PDF
    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = −0.025 ± 0.025‰ (±2 s.d.; n=39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium–aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd isotope composition giving an average composition for the bulk silicate Earth of δ146/144Nd = −0.022 ± 0.034‰ (n=30). In the samples here magmatic differentiation appears to only have an effect on stable Nd in highly evolved magmas with heavier δ146/144Nd values observed in samples with >70 wt% SiO2. The average stable Nd isotope composition of chondrites and the bulk silicate Earth are indistinguishable at the 95% confidence level. However, mantle samples do possess variable stable Nd isotope compositions (Δ146/144Nd = 75 ppm) with an average δ146/144Nd value of −0.008‰. If these heavier values represent the true composition of pristine mantle then it is not possible to completely rule out some role for core formation in accounting for some of the offset between the mantle and chondrites. Overall, these results indicate that the mismatch of 142Nd between the Earth and chondrites is best explained by a higher proportion of s-process Nd in the Earth, rather than partitioning into sulfide or S-rich metal in the core

    The chondritic neodymium stable isotope composition of the Earth inferred from mid-ocean ridge, ocean island and arc basalts

    No full text
    Accurate knowledge of the composition of Earth’s major chemical reservoirs is fundamental for constraining all modern geochemical cycles. Basaltic rocks provide a direct way of sampling the composition of Earth’s inaccessible interior. Here, we present the first comprehensive neodymium (Nd) stable isotope analyses for a global compilation of mid-ocean ridge, ocean island, continental intraplate and island arc basalts using a double-spike technique. In these primitive magma compositions magmatic differentiation has no resolvable effect on δ146/144Nd. Mid-ocean ridge basalts possess an extremely homogenous δ146/144Nd with an average composition of δ146/144Nd = −0.025 ± 0.013‰ (±2 s.d.; n = 33). Ocean island and continental intraplate magmas possess more variable compositions (δ146/144Nd = 62 ppm) that are related to the variable incorporation of recycled components in their source regions. Island arc basalts from New Britain (δ146/144Nd = 61 ppm) reflect the complex interplay between source composition, degree of melting and slab-fluid inputs. Variations are uncorrelated with indicators of magmatic differentiation or slab-fluid addition, rather increasing δ146/144Nd with slab depth is attributed to a higher proportion of metasomatized sub-arc mantle in the melting region. A partial melting model for Nd stable isotopes has been constructed using Nd–O force constants calculated using the Born-Lande approximation. Melting of typical mantle peridotite will induce no resolvable fractionations of Nd stable isotopes (Δ146/144Ndmelt-mantle < 0.003‰ at 1200 °C). The lack of fractionation upon partial melting means primitive magmatic rocks can be used to calculate the average composition of the bulk silicate Earth (BSE), which is δ146/144Nd = −0.024 ± 0.031‰ (±2 s.d.; n = 80). This BSE composition is indistinguishable at the 95 % confidence level from that of chondritic meteorites, the building blocks of Earth. Therefore, sequestration of significant quantities of Nd into the sulfide matte did not occur, this combined with recent experimental evidence for no Sm-Nd fractionation means the sulfide matte cannot be considered a plausible solution for the 142Nd/144Nd offset between the Earth and chondrites. Despite resolvable variations in δ146/144Nd from the canonical value being widespread in terrestrial materials, they are not large enough to generate the difference in radiogenic Nd isotope ratios between the BSE and chondrites
    corecore