15 research outputs found

    A novel method for Ion Exchange Capacity characterization applied to Anion Exchange Membranes for Water Electrolysers

    Get PDF
    Hydrogen production from water electrolysis, hydrogen fuel cells and redox flow batteries are the right approach for the renewable energy sector because the electricity generated by solar, wind, photovoltaic, hydroelectric can be managed with a carbon-free approach. These technologies all have in common one fundamental component: the membrane. Different types of membranes have been developed for both cationic and anionic exchange, and recently, research activity focalized on improving their performances is very fervent. One fundamental characteristic of a membrane is its Ion Exchange Capacity (IEC), i.e. the density of charged functionalizing groups. Within our research project NEMESI, funded by EU-PNRR (ID: RSH2B_000002), and dedicated to Anion Exchange Membrane Water Electrolysis, we studied and validated a novel alternative method to measure IEC. The present titration methods have limitations for the need of dedicated hardware or qualitative inspection of their color-turning endpoint. The proposed method, based on the redox titration of potassium ferricyanide with ascorbic acid, allows a quantitative and independent assessment based on both potentiometric and spectrophotometric measurements, along with the usually adopted visual observation, as the yellow-colored ferricyanide is reduced to colorless ferrocyanide. Moreover, if compared to the classical Mohr titration with silver nitrate, the new method can be carried out at variable ferricyanide concentrations during the addition of the ascorbic acid, so a complete curve of the redox reaction can be constructed: the initial ferricyanide ion load of the membrane (IEC) can thus be derived in a more precise way than with a single-point evaluation. Only one Ag/AgCl reference electrode and a platinum working electrode are required without any power supply/potentiostat. The proposed method was validated using Anion Exchange Membranes with known IEC

    The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations

    Get PDF
    Calorimetric space experiments were employed for the direct measurements of cosmic-ray spectra above the TeV region. According to several theoretical models and recent measurements, relevant features in both electron and nucleus fluxes are expected. Unfortunately, sizable disagreements among the current results of different space calorimeters exist. In order to improve the accuracy of future experiments, it is fundamental to understand the reasons of these discrepancies, especially since they are not compatible with the quoted experimental errors. A few articles of different collaborations suggest that a systematic error of a few percentage points related to the energy-scale calibration could explain these differences. In this work, we analyze the impact of the nonproportionality of the light yield of scintillating crystals on the energy scale of typical calorimeters. Space calorimeters are usually calibrated by employing minimal ionizing particles (MIPs), e.g., nonshowering proton or helium nuclei, which feature different ionization density distributions with respect to particles included in showers. By using the experimental data obtained by the CaloCube collaboration and a minimalist model of the light yield as a function of the ionization density, several scintillating crystals (BGO, CsI(Tl), LYSO, YAP, YAG and BaF2) are characterized. Then, the response of a few crystals is implemented inside the Monte Carlo simulation of a space calorimeter to check the energy deposited by electromagnetic and hadronic showers. The results of this work show that the energy scale obtained by MIP calibration could be affected by sizable systematic errors if the nonproportionality of scintillation light is not properly taken into account

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    A novel method for Ion Exchange Capacity characterization applied to Anion Exchange Membranes for Water Electrolysers

    No full text
    Hydrogen production from water electrolysis, hydrogen fuel cells and redox flow batteries are the right approach for the renewable energy sector because the electricity generated by solar, wind, photovoltaic, hydroelectric can be managed with a carbon-free approach. These technologies all have in common one fundamental component: the membrane. Different types of membranes have been developed for both cationic and anionic exchange, and recently, research activity focalized on improving their performances is very fervent. One fundamental characteristic of a membrane is its Ion Exchange Capacity (IEC), i.e. the density of charged functionalizing groups. Within our research project NEMESI, funded by EU-PNRR (ID: RSH2B_000002), and dedicated to Anion Exchange Membrane Water Electrolysis, we studied and validated a novel alternative method to measure IEC. The present titration methods have limitations for the need of dedicated hardware or qualitative inspection of their color-turning endpoint. The proposed method, based on the redox titration of potassium ferricyanide with ascorbic acid, allows a quantitative and independent assessment based on both potentiometric and spectrophotometric measurements, along with the usually adopted visual observation, as the yellow-colored ferricyanide is reduced to colorless ferrocyanide. Moreover, if compared to the classical Mohr titration with silver nitrate, the new method can be carried out at variable ferricyanide concentrations during the addition of the ascorbic acid, so a complete curve of the redox reaction can be constructed: the initial ferricyanide ion load of the membrane (IEC) can thus be derived in a more precise way than with a single-point evaluation. Only one Ag/AgCl reference electrode and a platinum working electrode are required without any power supply/potentiostat. The proposed method was validated using Anion Exchange Membranes with known IEC

    Status of the LHCf experiment

    No full text
    International audienceA precise understanding of hadronic interactions is essential to interpreting the mass composition of ultra-high energy cosmic rays from the results of air shower experiments. The Large Hadron Collier forward (LHCf) experiment aims to measure forward neutral particles for validation of hadronic interaction models adopted in air shower simulations. We already published the production cross sections of forward photons and neutrons for proton-proton collisions at √s=13 TeV. Recently, we showed a preliminary result of the energy spectrum of forward η mesons for proton-proton collisions at √s=13 TeV. Moreover, in September 2022, we had another data-taking for proton-proton collisions at √s=13.6 TeV. In data taking, we planned to obtain a number of π0 and η candidates ten times larger for precise measurements and to perform the joint operation with ATLAS Roman pots and zero-degree calorimeters. Thanks to the joint operation with the ATLAS Roman pots, we can measure diffractive mass and neutral particles from diffractive dissociation simultaneously. Furthermore, energy resolution for neutrons is expected to be improved from 40% to 20% by combining the LHCf and the ATLAS zero-degree calorimeters. In this work, we report the status and prospects of the LHCf experiment

    Performance evaluation of LHCf-ATLAS ZDC joint measurement using proton beam

    No full text
    International audienceMeasurements of forward neutrons in pp collisions will allow us to investigate π-p cross-section via one-pion exchange process, which are important for air shower development. However, the precision of these measurements is limited by the energy resolution of the LHCf detectors. To improve it, a joint measurement with the ATLAS ZDC was planned. In 2021, a beam test was conducted to evaluate the performance of the joint measurement of the LHCf-Arm1 and ZDC detectors using proton beams of 350 GeV at SPS. Combining the LHCf data with the ZDC data, we confirmed that the energy resolution improved from about 40% to 21.4%
    corecore